A+ A A-

Download article

Sheybak L.N.
The peculiarities of amino acids supply and need for them in the neonatal period
Education Establishment "Grodno State Medical University", Republic of Belarus

Traditionally considered nonessential amino acids (i.e., glutamine, glutamate, arginine) perform important functions in gene expression, signalling systems, antioxidant protection and immunity. Furthermore, glutamate, glutamine and aspartate are major metabolic energy substrates for the small intestine, and they, along with  glycine regulate neurological functions. Among the essential amino acids special attention is paid to leucine which activates mTOR for the stimulation of protein synthesis and inhibits proteolysis as well as to tryptophan, which modulates immunological and neurological functions by means of a great number of metabolites, including serotonin and melatonin. Accumulated literature data allow us to put forward a conception of functional amino acids; amino acids that in addition to their participating in protein biosynthesis regulate key metabolic pathways aimed at the improvement of vitality, health, growth, development, lactation and reproduction of organisms can be considered to be amino acids of this kind.
Key words: аmino acids, newborn, need.


1. Sheibak LN. Osobennosti metabolizma svobodnykh aminokislot u ploda i novorozhdennogo [Features of a metabolism of free amino acids at a fetus and the newborn]. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta. 2003;(2):14–18.
2. Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009 May;37(1):1-17.
3. Yarandi SS, Zhao VM, Hebbar G, Ziegler TR. Amino acid composition in parenteral nutrition: what is the evidence? Curr Opin Clin Nutr Metab Care. 2011 Jan;14(1):75-82.
4. Wu G. Functional Amino Acids in Growth, Reproduction, and Health. Adv Nutr. 2010 Nov;1(1):31-7.
5. Wang J, Chen L, Li P, Li X, Zhou H, Wang F, Li D, Yin Y, Wu G. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr. 2008 Jun;138(6):1025-32.
6. Sheibak LN. Dinamika glikemii u novorozhdennykh detei ot materei s ozhireniem [Dynamics of a glycemia at newborn children from mothers with an obesity]. Meditsinskaia panorama. 2001;(4):25-6.
7. Bazer FW, Wu G, Spencer TE, Johnson GA, Burghardt RC, Bayless K. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod. 2010 Mar;16(3):135-52.
8. Karau A, Grayson I. Amino acids in human and animal nutrition. Adv Biochem Eng Biotechnol. 2014;143:189-228.
9. Krzyściak W. Activity of selected aromatic amino acids in biological systems. Acta Biochim Pol. 2011;58(4):461-6.  
10. Brasse-Lagnel C, Lavoinne A, Husson A. Control of mammalian gene expression by amino acids, especially glutamine. FEBS J. 2009 Apr;276(7):1826-44.
11. Bruhat A, Chérasse Y, Chaveroux C, Maurin AC, Jousse C, Fafournoux P. Amino acids as regulators of gene expression in mammals: molecular mechanisms. Biofactors. 2009 May-Jun;35(3):249-57.
12. Kim SW, Wu G. Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr. 2004 Mar;134(3):625-30.
13. Mateo RD, Wu G, Bazer FW, Park JC, Shinzato I, Kim SW. Dietary L-arginine supplementation enhances the reproductive performance of gilts. J Nutr. 2007 Mar;137(3):652-6.
14. Zeng X, Wang F, Fan X, Yang W, Zhou B, Li P, Yin Y, Wu G, Wang J. Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr. 2008 Aug;138(8):1421-5.
15. Li P, Yin YL, Li D, Kim SW, Wu G. Amino acids and immune function. Br J Nutr. 2007 Aug;98(2):237-52.
16. Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 2009 May;37(1):153-68.
17. Yao K, Yin YL, Chu W, Liu Z, Deng D, Li T, Huang R, Zhang J, Tan B, Wang W, Wu G. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr. 2008 May;138(5):867-72.
18. Corl BA, Odle J, Niu X, Moeser AJ, Gatlin LA, Phillips OT, Blikslager AT, Rhoads JM. Arginine activates intestinal p70(S6k) and protein synthesis in piglet rotavivrus enteritis. J Nutr. 2008 Jan;138(1):24-9.
19. Elango R, Ball RO, Pencharz PB. Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino Acids. 2009 May;37(1):19-27.
20. Haynes TE, Li P, Li X, Shimotori K, Sato H, Flynn NE, Wang J, Knabe DA, Wu G. L-Glutamine or L-alanyl-L-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids. 2009 May;37(1):131-42.
21. Kimura H. Hydrogen sulfide: from brain to gut. Antioxid Redox Signal. 2010 May 1;12(9):1111-23.
22. Rhoads MJ, Wu G. Glutamine, arginine, and leucine signaling in the intestine. Amino Acids. 2009 May;37(1):111-22.
23. Wu X, Ruan Z, Gao Y, Yin Y, Zhou X, Wang L, Geng M, Hou Y, Wu G. Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino Acids. 2010 Aug;39(3):831-9.
24. Braissant O. Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab. 2010;100 Suppl 1:3-12.
25. Moltu SJ, Blakstad EW, Strømmen K, Almaas AN, Nakstad B, Rønnestad A, Brække K, Veierød MB, Drevon CA, Iversen PO, Westerberg AC. Enhanced feeding and diminished postnatal growth failure in very-low-birth-weight infants. J Pediatr Gastroenterol Nutr. 2014 Mar;58(3):344-51.
26. Thureen PJ, Melara D, Fennessey PV, Hay WW Jr. Effect of low versus high intravenous amino acid intake on very low birth weight infants in the early neonatal period. Pediatr Res. 2003 Jan;53(1):24-32.
27. Thomaz DM, Serafin PO, Palhares DB, Tavares LV, Grance TR. Serum phenylalanine in preterm newborns fed different diets of human milk. J Pediatr (Rio J). 2014 Sep-Oct;90(5):518-22.
28. Sheibak VM. Leitsin, izoleitsin, valin: biokhimicheskie osnovy razrabotki novykh lekarstvennykh sredstv [Leucinum, isoleucinum, valine: biochemical bases of development of new medicines]. Grodno, RB: GrGMU; 2014. 242 р.
29. Sheibak VM, Sheibak LN. Biologicheskaia rol' taurina v organizme mlekopitaiushchikh [Biological role of a taurine in an organism of mammals]. Meditsinskie novosti. 2005;(10):15-8.
30. Sheibak LN. Grudnoe moloko, vliianie ekologii i voprosy estestvennogo vskarmlivaniia [Breast milk, influence of a bionomics and questions of natural feeding]. Grodno, RB; 1999. 141 р.
31. Chesney RW, Han X, Patters AB. Taurine and the renal system. J Biomed Sci. 2010;17 Suppl 1:4.
32. Duggleby SL, Jackson AA. Protein, amino acid and nitrogen metabolism during pregnancy: how might the mother meet the needs of her fetus? Curr Opin Clin Nutr Metab Care. 2002 Sep;5(5):503-9.
33. Rothe M, Blaut M. Evolution of the gut microbiota and the influence of diet. Benef Microbes. 2013 Mar;4(1):31-7.
34. Brosnan JT, Brosnan ME. Creatine metabolism and the urea cycle. Mol Genet Metab. 2010;100 Suppl 1:49-52.
35. Pereira S, Marliss EB, Morais JA, Chevalier S, Gougeon R. Insulin resistance of protein metabolism in type 2 diabetes. Diabetes. 2008 Jan;57(1):56-63.
36. Bergen WG, Wu G. Intestinal nitrogen recycling and utilization in health and disease. J Nutr. 2009 May;139(5):821-5.
37. Wang Y, Zhang L, Zhou G, Liao Z, Ahmad H, Liu W, Wang T. Dietary L-arginine supplementation improves the intestinal development through increasing mucosal Akt and mammalian target of rapamycin signals in intra-uterine growth retarded piglets. Br J Nutr. 2012 Oct;108(8):1371-81.
38. Jobgen W, Meininger CJ, Jobgen SC, Li P, Lee MJ, Smith SB, Spencer TE, Fried SK, Wu G. Dietary L-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr. 2009 Feb;139(2):230-7.
39. Liu Y, Huang J, Hou Y, Zhu H, Zhao S, Ding B, Yin Y, Yi G, Shi J, Fan W. Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br J Nutr. 2008 Sep;100(3):552-60.
40. Wang WW, Qiao SY, Li DF. Amino acids and gut function. Amino Acids. 2009 May;37(1):105-10.
41. Bertolo RF, Burrin DG. Comparative aspects of tissue glutamine and proline metabolism. J Nutr. 2008 Oct;138(10):2032-9.
42. Burrin DG, Janeczko MJ, Stoll B. Emerging aspects of dietary glutamate metabolism in the developing gut. Asia Pac J Clin Nutr. 2008;17 Suppl 1:368-71.
43. Burrin DG, Stoll B. Metabolic fate and function of dietary glutamate in the gut. Am J Clin Nutr. 2009;90:850-6.
44. Stoll B, Burrin DG. Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J Anim Sci. 2006 Apr;84 Suppl:60-72.
45. Chen L, Yin Yu-L, Jobgen WS, Jobgen SC, Knabe DA, Hu W-X, Wu G. In vitro oxidation of essential amino acids by intestinal mucosal cells of growing pigs. Livest Sci. 2007;109:19-23.
46. Chen L, Li P, Wang J, Gao H, Yin Y, Hou Y, Wu G. Catabolism of essential amino acids in developing porcine enterocytes. Amino Acids. 2009 May;37(1):143-52.
47. Watford M. Glutamine metabolism and function in relation to proline synthesis and the safety of glutamine and proline supplementation. J Nutr. 2008 Oct;138(10):2003-7.
48. Van Klinken BJ, Tytgat KM, Büller HA, Einerhand AW, Dekker J. Biosynthesis of intestinal mucins: MUC1, MUC2, MUC3 and more. Biochem Soc Trans. 1995 Nov;23(4):814-8.
49. Sheibak LN. Svobodnye aminokisloty v syvorotke pupovinnoi krovi malovesnykh novorozhdennykh detei [Free amino acids in Serum of an umbilical blood the malovesnykh of newborn children]. Meditsinskie novosti. 2003;(12):98-100.


Поиск по сайту