A+ A A-

Download article


Tapalski D.V.
Sensitivity of Pseudomonas aeruginosa nosocomial isolates to the preparations for phagotherapy
Gomel State Medical University, Gomel, Republic of Belarus

Vestnik VGMU. 2018;17(2):47-54.

Objectives. To determine the sensitivity of Pseudomonas aeruginosa clinical isolates with different antibiotic resistance levels to the preparations for phagotherapy.
Material and methods. Sensitivity of 162 P.aeruginosa clinical isolates obtained in 2010-2014 from hospitalized patients in five Belarusian regions to 4 preparations for phagotherapy (spot-test) and 8 antibiotics (disk-diffusion method) was determined. The lytic bacteriophages from river water samples were isolated and their activity spectrum was determined.
Results. The high prevalence of extremely antibiotic-resistant P.aeruginosa (25,9% of the total number of isolates) was shown. 31,5% of isolates were insensitive to ceftazidime, 66,0% – to cefepime, 84,6% – to imipenem, 95,7% – to meropenem, 82,1% – to aztreonam, 96,9% – to ciprofloxacin, and 87,0% – to amikacin. All isolates were sensitive to colistin. 25,3% of P.aeruginosa isolates were sensitive to «Pseudomonas aeruginosa bacteriophage» (Perm city), 22,2% – to «Pseudomonas aeruginosa bacteriophage» (Nizhni Novgorod city), 24.1% – to «Sextaphage» (Perm city), 15.4% – to «Pyobacteriophage polyvalent, purified» (Ufa city). The lytic activity level of bacteriophages preparations was shown to be 1.3-2.6 times lower in relation to extremely antibiotic-resistant P.aeruginosa isolates as compared with the antibiotic-sensitive isolates. The phage lysates capable to lyse with intensity «4+» the XDR P.aeruginosa isolates resistant to the action of existing phagotherapy preparations were obtained from external environment objects.
Conclusions. Insufficient microbiological activity of commercially available bacteriophages preparations with the claimed activity in relation to P.aeruginosa was found. The expansion of the activity spectrum of preparations used for phagotherapy can be performed by including in their composition new lytic P.aeruginosa bacteriophages isolated from environmental water samples.
Key words: Pseudomonas aeruginosa, antibiotics, antibiotic resistance, bacteriophages, water, lytic activity.


1. Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. 2013 Mar;11(3):297-308. doi:
2. Eydel'shteyn MV, Sukhorukova MV, Skleenova EYu, Ivanchik NV, Mikotina AV, Shek EA, i dr. Antibiotic resistance of nosocomial strains of Pseudomonas aeruginosa in Russian hospitals: results of multi-center epidemiological study "MARATHON" 2013-2014. Klin Mikrobiologiia Antimikrob Khimioterapiia. 2017;19(1):37-41. (In Russ.)
3. Chebotar' IV, Bocharova YuA, Mayanskiy NA. Mechanisms of resistance of Pseudomonas aeruginosa to antibiotics and their regulation. Klin Mikrobiologiia Antimikrob Khimioterapiia. 2017;19(4):308-19. (In Russ.)
4. Eydel'shteyn MV, Skleenova EYu, Shevchenko OV, Tapal'skiy DV, Azizov IS, Dsouza DV, i dr. Prevalence and molecular epidemiology of gram-negative bacteria producing metal-beta-lactamase in Russia, Belarus and Kazakhstan. Klin Mikrobiologiia Antimikrob Khimioterapiia. 2012;14(2):132-52. (In Russ.)
5. Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011 Mar;1(2):111-114. doi:
6. Viertel TM, Ritter K, Horz HP. Viruses versus bacteria-novel approaches to phage therapy as a tool against mul-tidrug-resistant pathogens. J Antimicrob Chemother. 2014 Sep;69(9):2326-36. doi:
7. Aslanov BI. Bacteriophages are effective antibacterial agents in the context of global resistance to antibiotics. Med Sovet. 2015;(13):106-10. (In Russ.)
8. Wright A, Hawkins CH, Anggård EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to an-tibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol. 2009 Aug;34(4):349-57. doi:
9. Krylov VN. Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy. Adv Virus Res. 2014;88:227-78. doi:
10. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010 May;8(5):317-27. doi:
11. Aslanov BI, Yafaev RKh, Zueva LP. Ways of rational use of Pseudomonas aeruginosa bacteriophages in therapeutic and anti-epidemic practice. Zhurn Mikrobiologii Epidemiologii Immunobiologii. 2003;(5):72-6. (In Russ.)
12. Gabrielyan NI, Gorskaya EM, Spirina TS, Prudnikova SA, Romashkina LYu. Investigation of antibiotic and phage sensitivity of nosocomial strains of microbes isolated from patients of Transplantology clinic. Vestn Transplantologii Iskusstven Organov. 2011;13(3):26-32. (In Russ.)
13. Aleshkin AV, Svetoch EA, Volozhantsev NV, Kiseleva IA, Rubal'skiy EO, Ershova ON, i dr. Innovative directions of use of bacteriophages in the sphere of sanitary and epidemiological welfare of the population of the Russian Federation. Bakteriologiia. 2016;1(1):22-31. (In Russ.)
14. Tapal'skiy DV. Bacteriophage preparations and antibiotic combinations: in vitro activity against isolates Pseudomonas aeruginosa ST235 with extreme antibiotic resistance. Klin Mikrobiologiia Antimikrob Khimioterapiia. 2016;18(4):242-8. (In Russ.)
15. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0 [Internet]. 2016 [cited 2018 Mar 14]. Available from:

Information about authors:
Tapalski D.V. – Candidate of Medical Sciences, associate professor, head of the Chair of Medical Microbiology, Virology and Immunology, Gomel State Medical University.

Correspondence address: Republic of Belarus, 246050, Gomel, 5 Lange str., Gomel State Medical University, Chair of Medical Microbiology, Virology and Immunology. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Dmitry V. Tapalski.

Поиск по сайту