Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2019.4.28

Tkachenko A.S.
Inflammasomes and pyroptosis of intestinal epithelial cells: their contribution to Crohn’s disease and ulcerative colitis
Kharkiv National Medical University, Kharkiv, Ukraine

Vestnik VGMU. 2019;18(4):28-39.

Abstract.
This review article deals with the role of inflammasomes and pyroptosis of intestinal epithelial cells in the development of chronic inflammatory bowel diseases: Crohn’s disease and ulcerative colitis. Pyroptosis is a caspase-1-mediated mode of cell death associated with the cleavage of gasdermin D and release of pro-inflammatory cytokines IL-1β and IL-18. The paper covers characteristics of pyroptosis with the description of its triggers, functions, mechanisms and regulation, as well as pro-inflammatory effects of this cell death mode. Pyroptosis of intestinal epithelial cells is described in detail under normal and pathological circumstances. The pivotal role of inflammasomes and pyroptosis in the pathogenesis of chronic inflammatory bowel diseases substantiates the great importance of the development and trial of antipyroptotic drugs.
Key words: pyroptosis, inflammasomes, cell death, intestinal epithelial cells, chronic inflammatory bowel diseases, intestinal inflammation.

The author expresses his sincere gratitude to Anton Miroshnichenko for his essential help while preparing illustrations for the article.

References

1. Kovacs SB, Miao EA. Gasdermins: Effectors of Pyroptosis. Trends Cell Biol. 2017 Sep;27(9):673-84. doi:10.1016/j.tcb.2017.05.005
2. Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017 Apr;42(4):245-4. doi: http://dx.doi.org/10.1016/j.tibs.2016.10.004
3. Jorgensen I. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015 May;265(1):130-42. doi: http://dx.doi.org/10.1111/imr.12287
4. Feng S, Fox D, Man SM. Mechanisms of gasdermin family members in inflammasome signaling and cell death. J Mol Biol. 2018 Sep;430(18 Pt B):3068-80. doi: http://dx.doi.org/10.1016/j.jmb.2018.07.002
5. Schneider KS, Groß CJ, Dreier RF, Saller BS, Mishra R, Gorka O, et al. The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of caspase-1 protease activity. Cell Rep. 2017 Dec; 21(13):3846-59. doi: http://dx.doi.org/10.1016/j.celrep.2017.12.018
6. Ramos-Junior ES, Morandini AC. Gasdermin: A new player to the inflammasome game. Biomed J. 2017 Dec;40(6):313-16. doi: http://dx.doi.org/10.1016/j.bj.2017.10.002
7. Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2019 Jan;26(1):99-114. doi: http://dx.doi.org/10.1038/s41418-018-0212-6
8. Yuan YY, Xie KX, Wang SL, Yuan LW. Inflammatory caspase-related pyroptosis: mechanism, regulation and therapeutic potential for inflammatory bowel disease. Gastroenterol Rep (Oxf). 2018 Aug;6(3):167-76. doi:10.1093/gastro/goy011
9. Davis EM, Kaufmann Y, Goyne H, Wang Y, Chen T, Theus S, et al. Pyroptosis of intestinal epithelial cells is crucial to the development of mucosal barrier dysfunction and intestinal inflammation. Gastroenterology. 2017 Apr;152(5 Suppl 1):S967.
10. Fourie S, Jackson D, Aveyard H. Living with inflammatory bowel disease: A review of qualitative research studies. Int J Nurs Stud. 2018 Nov;87:149-56. doi: http://dx.doi.org/10.1016/j.ijnurstu.2018.07.017
11. Wehkamp J, Götz M, Herrlinger K, Steurer W, Stange EF. Inflammatory bowel disease. Dtsch Arztebl Int. 2016 Feb;113(5):72-82. doi: http://dx.doi.org/10.3238/arztebl.2016.0072
12. Zuo T, Ng SC. The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front Microbiol. 2018 Sep;9:2247. doi:10.3389/fmicb.2018.02247
13. Ko JK, Auyeung KK. Inflammatory bowel disease: etiology, pathogenesis and current therapy. Curr Pharm Des. 2014;20(7):1082-96.
14. Tkachenko AS. Intestinal epithelial cells necroptosis and its association with intestinal inflammation. J Clin Med Kaz. 2019;1(51):12-5. doi:10.23950/1812-2892-JCMK-00658
15. Negroni A, Cucchiara S, Stronati L. Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis. Mediators Inflamm. 2015;2015:250762. doi:10.1155/2015/250762
16. Monteleone M, Stanley AC, Chen KW, Brown DL, Bezbradica JS, von Pein JB, et al. Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep. 2018 Aug;24(6):1425-33. doi: http://dx.doi.org/10.1016/j.celrep.2018.07.027
17. Chen Q, Shi P, Wang Y, Zou D, Wu X, Wang D, et al. GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity. J Mol Cell Biol. 2018 Jun;11(6):496-508. doi: http://dx.doi.org/10.1093/jmcb/mjy056
18. Denes A, Coutts G, Lénárt N, Cruickshank SM, Pelegrin P, Skinner J, et al. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc Natl Acad Sci USA. 2015 Mar;112(13):4050-5. doi: http://dx.doi.org/10.1073/pnas.1419090112
19. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015 Jul;21(7):677-87. doi:10.1038/nm.3893
20. Malik A, Kanneganti TD. Inflammasome activation and assembly at a glance. J Cell Sci. 2017 Dec;130(23):3955-63. doi:10.1242/jcs.207365
21. Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 2015 Mar;13(2):148-59. doi:10.1038/cmi.2015.95
22. Sollberger G, Strittmatter GE, Garstkiewicz M, Sand J, Beer HD. Caspase-1: the inflammasome and beyond. Innate Immun. 2014 Feb;20(2):115-25. doi: http://dx.doi.org/10.1177/1753425913484374
23. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017 May;277(1):61-75. doi:10.1111/imr.12534
24. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015 Oct;526(7575):660-5. doi: http://dx.doi.org/10.1038/nature15514
25. Hurtley SM. Apoptosis, necrosis, and pyroptosis. Science. 2016 Apr;352(6281):48-50. doi: http://dx.doi.org/10.1126/science.352.6281.48-j
26. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005 Apr;73(4):1907-16. doi:10.1128/IAI.73.4.1907-1916.2005
27. Taabazuing CY, Okondo MC, Bachovchin DA. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem Biol. 2017 Apr;24(4):507-14. doi:10.1016/j.chembiol.2017.03.009
28. Conos SA, Chen KW, De Nardo D, Hara H, Whitehead L, Núñez G, et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci USA. 2017 Feb;114(6):E961-E969. doi: http://dx.doi.org/10.1073/pnas.1613305114
29. Blander JM. Death in the intestinal epithelium – Basic biology and implications for inflammatory bowel disease. FEBS J. 2016 Jul;283(14):2720-30. doi:10.1111/febs.13771
30. Horvay K, Abud HE. Regulation of intestinal stem cells by Wnt and Notch signalling. Adv Exp Med Biol. 2013;786:175-86. doi: http://dx.doi.org/10.1007/978-94-007-6621-1_10
31. Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL, Lee AY, et al. Immunity. 2017 Apr;46(4):649-59. doi: http://dx.doi.org/10.1016/j.immuni.2017.03.016
32. Sellin ME, Müller AA, Felmy B, Dolowschiak T, Diard M, Tardivel A, et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict salmonella replication in the intestinal mucosa. Cell Host Microbe. 2014 Aug;16(2):237-48. doi: http://dx.doi.org/10.1016/j.chom.2014.07.001
33. Knodler LA, Crowley SM, Sham HP, Yang H, Wrande M, Ma C, et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe. 2014 Aug; 16(2):249-56. doi: http://dx.doi.org/10.1016/j.chom.2014.07.002
34. Lei-Leston AC, Murphy AG, Maloy KJ. Epithelial cell inflammasomes in intestinal immunity and inflammation. Front Immunol. 2017 Sep;8:1168. doi:10.3389/fimmu.2017.01168
35. Progatzky F, Sangha NJ, Yoshida N, McBrien M, Cheung J, Shia A, et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat Commun. 2014 Dec;5:5864. doi: http://dx.doi.org/10.1038/ncomms6864
36. Zhao Y, Shao F. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol Rev. 2015 May;265(1):85-102. doi: http://dx.doi.org/10.1111/imr.12293
37. Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, Brown EM, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 2014 Feb;156(5):1045-59. doi: http://dx.doi.org/10.1016/j.cell.2014.01.026
38. Levy M, Thaiss CA, Zeevi D, Dohnalova L, Zilberman-Schapira G, Mahdi JA, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 2015 Dec;163(6):1428-43. doi: http://dx.doi.org/10.1016/j.cell.2015.10.048
39. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018 Aug;50:103. doi: http://dx.doi.org/10.1038/s12276-018-0126-x
40. Siegmund B. Interleukin-1beta converting enzyme (caspase-1) in intestinal inflammation. Biochem Pharmacol. 2002 Jul;64(1):1-8. doi: http://dx.doi.org/10.1016/s0006-2952(02)01064-x
41. Coccia M, Harrison OJ, Schiering C, Asquith MJ, Becher B, Powrie F, et al. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med. 2012 Aug;209(9):1595-609. doi: http://dx.doi.org/10.1084/jem.20111453
42. Davis EM, Zhang D, Glover SC, Stappenbeck T, Wang S, Liu JJ. P128 inhibition of intestinal epithelial cell pyroptosis and associated mucosal barrier defects is a potential therapeutic mechanism of action for mesalamine in IBD. Gastroenterol. 2019 Feb;156(3):S88. doi: http://dx.doi.org/10.1053/j.gastro.2019.01.204
43. Xiong Y, Lou Y, Su H, Fu Y, Kong J. Cholecalciterol cholesterol emulsion ameliorates experimental colitis via down-regulating the pyroptosis signaling pathway. Exp Mol Pathol. 2016 Jun;100(3):386-92. doi: http://dx.doi.org/10.1016/j.yexmp.2016.03.003
44. Liu L, Dong Y, Ye M, Jin S, Yang J, Joosse ME, et al. The pathogenic role of NLRP3 inflammasome activation in inflammatory bowel diseases of both mice and humans. J Crohns Colitis. 2017 Jun;11(6):737-50. doi: http://dx.doi.org/10.1093/ecco-jcc/jjw219
45. Monteleone G, Trapasso F, Parrello T, Biancone L, Stella A, Iuliano R, et al. Bioactive IL-18 expression is up-regulated in Crohn's disease. J Immunol. 1999 Jul;163(1):143-7.
46. Nowarski R, Jackson R, Gagliani N, de Zoete MR, Palm NW, Bailis W, et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell. 2015 Dec; 163(6):1444-56. doi: http://dx.doi.org/10.1016/j.cell.2015.10.072
47. Seregin SS, Golovchenko N, Schaf B, Chen J, Eaton KA, Chen GY. NLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury. Mucosal Immunol. 2017 Mar;10(2):434-45. doi: http://dx.doi.org/10.1038/mi.2016.55
48. Itani S, Watanabe T, Nadatani Y, Sugimura N, Shimada S, Takeda S, et al. NLRP3 inflammasome has a protective effect against oxazolone-induced colitis: a possible role in ulcerative colitis. Sci Rep. 2016 Dec;6:39075. doi: http://dx.doi.org/10.1038/srep39075
49. Zhen Y, Zhang H. NLRP3 Inflammasome and inflammatory bowel disease. Front Immunol. 2019;10:276. doi:10.3389/fimmu.2019.00276
50. Man SM. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol. 2018 Dec;15(12):721-37. doi: http://dx.doi.org/10.1038/s41575-018-0054-1
51. Alipour M, Lou Y, Zimmerman D, Bording-Jorgensen MW, Sergi C, Liu JJ, et al. A balanced IL-1beta activity is required for host response to Citrobacter rodentium infection. PLoS ONE. 2013 Dec;8(12):e80656. 10.1371/journal.pone.0080656
52. Hasegawa M, Kamada N, Jiao Y, Liu MZ, Nunez G, Inohara N. Protective role of commensals against Clostridium difficile infection via an IL-1beta-mediated positive-feedback loop. J Immunol. 2012 Sep;189(6):3085-91. 10.4049/jimmunol.1200821
53. Bauer C, Duewell P, Lehr HA, Endres S, Schnurr M. Protective and aggravating effects of NLRP3 inflammasome activation in IBD models: influence of genetic and environmental factors. Digest Dis. 2012;30 Suppl 1:82-90. 10.1159/000341681
54. Mao L, Kitani A, Strober W, Fuss IJ. The role of NLRP3 and IL-1β in the pathogenesis of inflammatory bowel disease. Front Immunol. 2018 Nov;9:2566. doi:10.3389/fimmu.2018.02566
55. Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 2010 Mar;32(3):379-91. 10.1016/j.immuni.2010.03.003
56. Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010 May;207(5):1045-56. doi: http://dx.doi.org/10.1084/jem.20100050
57. Liu L, Li X. NLRP3 inflammasome in inflammatory bowel disease: friend or foe? Dig Dis Sci. 2017 Sep;62(9):2211-14. doi: http://dx.doi.org/10.1007/s10620-017-4650-7
58. Perera AP, Fernando R, Shinde T, Gundamaraju R, Southam B, Sohal SS, et al. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Sci Rep. 2018 Jun;8:8618. doi: http://dx.doi.org/10.1038/s41598-018-26775-w

Information about authors:
Tkachenko A.S. – Candidate of Medical Sciences, associate professor of the Chair of Biochemistry, Kharkiv National Medical University,
ORCID: https://orcid.org/0000-0002-1029-1636

Correspondence address: Ukraine, 61022, Kharkiv, 4 Nauky ave., Kharkiv National Medical University, Chair of Biochemistry. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Anton S. Tkachenko.

Поиск по сайту