Menu

A+ A A-

Полный текст статьи

DOI: https://doi.org/10.22263/2312-4156.2017.5.49

Чекалина Н.И., Мануша Ю.И.
Обоснование целесообразности применения полифенолов ресвератрола и кверцетина при ишемической болезни сердца и её сочетании с аутоиммунным тиреоидитом. Часть II
Украинская медицинская стоматологическая академия, г. Полтава, Украина

Вестник ВГМУ. – 2017. – Том 16, №5. – С. 49-61.

Резюме.
В обзоре представлены результаты современных экспериментальных и клинических исследований, обосновывающие противовоспалительные свойства полифенолов – стильбена ресвератрола и флавоноида кверцетина. Изложены данные изучения влияния ресвератрола и кверцетина в условях кардиальной и эндокринной патологии. Сформулированы основные точки их приложения, целесообразность, эффективность и перспективы применения указанных средств при атеросклерозе, ишемической болезни сердца (ИБС) и аутоиммунном тиреоидите, а также, в условиях коморбидности.
Ключевые слова: ишемическая болезнь сердца, атеросклероз, аутоиммунный тиреоидит, хроническое системное воспаление, ресвератрол, кверцетин.

Литература

1. Dinarello, C. A. Proinflammatory cytokines / C. A. Dinarello // Chest. – 2000 Aug. – Vol. 118, N 2. – Р. 503–508.
2. Early inflammatory cytokine response: a direct comparison between spontaneous coronary plaque destabilization vs angioplasty induced / N. D. Brunetti [et al.] // Atherosclerosis. – 2014 Oct. – Vol. 236, N 2. – P. 456–460.
3. Role of cytokines in the pathogenesis and suppression of thyroid autoimmunity / B. B. Ganesh [et al.] // J. Interferon. Cytokine Res. – 2011 Oct. – Vol. 31, N 10. – Р. 721–731.
4. Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression / N. Calabriso [et al.] // Eur. J. Nutr. – 2016 Mar. – Vol. 55, N 2. – Р. 477–489.
5. Залесский, В. Н. Противовоспалительное питание в профилактике и лечении неинфекционных (в том числе опухолевых) заболеваний человека. Молекулярные защитные механизмы биоактивных компонентов пищи : монография / В. Н. Залесский, Н. В. Великая, С. Т. Омельчук. – Винница : Нова Книга, 2014. – 736 с.
6. Manna, S. K. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kB, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation / S. K. Manna, A. Mukhopadhyay, B. B. Aggarwal // J. Immunol. – 2000 Aug. – Vol. 164, N 12. – Р. 6509–6519.
7. Resveratrol (trans-3,5,4’-trihydroxystilbene) suppresses EL4 tumor growth by induction of apoptosis involving reciprocal regulation of SIRT1 and NF-κB / N. P. Singh [et al.] // Mol. Nutr. Food. Res. – 2011 Aug. – Vol. 55, N 8. – P. 1207–1218.
8. Кайдашев, И. П. NF-kB сигнализация как основа развития системного воспаления, инсулинорезистентности, липотоксичности, сахарного диабета 2 типа и атеросклероза / И. П. Кайдашев // Междунар. эндокринол. журн. – 2011. – № 3. – С. 35 – 45.
9. Расін, O. M. Молекулярні механізми протизапальної дії глітазонів та статинів: роль PPAR-gamma [Електронний ресурс] / О. М. Расін, І. П. Кайдашев, М. С. Расін // Междунар. эндокринол. журн. – 2007. – № 6. – Режим доступу: http://www.mif-ua.com/archive/article_print/3778. – Дата доступу: 12.10.2017.
10. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol / J. H. Um [et al.] // Diabetes. – 2010 Mar. – Vol. 59, N 3. – P. 554–563.
11. Кайдашев, И. П. Система сиртуинов и возможности регулирования ее состояния в клинической практике (обзор литературы) / И. П. Кайдашев // Журн. Нац. акад. мед. наук України. – 2012. – Т. 18, № 4. – С. 418–429.
12. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly(ADP-ribose) polymerase 1 (PARP-1) / R. S. Said [et al.] // Biochem. Pharmacol. – 2016 Mar. – Vol. 1, N 103. – Р. 140–150.
13. Baur, J. A. Therapeutic potential of resveratrol: the in vivo evidence / J. A. Baur, D. A. Sinclair // Nat. Rev. Drug Discov. – 2006 Jun. – Vol. 5, N 6. – P. 493–506.
14. AMPK as a new attractive therapeutic target for disease prevention: the role of dietary compounds / M. Gasparrini [et al.] // Curr. Drug. Targets. – 2016. – Vol. 17, N 8. – Р. 865–889.
15. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function / N. L. Price [et al.] // Cell. Metab. – 2012 May. – Vol. 15, N 5. – P. 675–690.
16. Resveratrol attenuates high glucose-induced oxidative stress and cardiomyocyte apoptosis through AMPK / S. Guo [et al.] // Mol. Cell. Endocrinol. – 2015 Sep. – Vol. 412. – Р. 85–94.
17. Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysacchride-activatewd microglia / X. L. Bi [et al.] // Int. immunopharmacol. – 2005 Jan. – Vol. 5, N 1. – Р. 185–193.
18. Resveratrol inhibits Porphyromonas gingivalis lipopolysaccharide-induced endothelial adhesion molecule expression by suppressing NF-κappaB activation / H. J. Park [et al.] // Arch. Pharm. Res. – 2009 Apr. – Vol. 32, N 4. – Р. 583–591.
19. Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms / L. E. Donnelly [et al.] // Am. J. Physiol. Lung. Cell. Mol. Physiol. – 2004 Oct. – Vol. 287, N 4. – Р. L774–L783.
20. Resveratrol for primary prevention of atherosclerosis: clinical trial evidence for improved gene expression in vascular endothelium / B. Agarwal [et al.] // Int. J. Cardiol. – 2013 Jun. – Vol. 166, N 1. – Р. 246–248.
21. Resveratrol attenuates C5a-induced inflammatory responses in vitro and in vivo by inhibiting phospholipase D and sphingosine kinase activities / P. D. Issuree [et al.] // FASEB J. – 2009 Aug. – Vol. 23, N 8. – Р. 2412–2424.
22. Sharma, H. S. Role of cytokines in myocardial ischemia and reperfusion / H. S. Sharma, D. K. Das // Mediators Inflamm. – 1997. – Vol. 6, N 3. – Р. 175–183.
23. Resveratrol provides late-phase cardioprotection by means of a nitric oxide- and adenosine-mediated mechanism / S. Bradamante [et al.] // Eur. J. Pharmacol. – 2003 Mar. – Vol. 465, N 1/2. – Р. 115–123.
24. Acute responses phytoestrogens in small arteries from men with coronary heart disease / M. N. Cruz [et al.] // Am. J. Physiol. Heart. Circ. Physiol. – 2006 May. – Vol. 290, N 5. – P. H1969–H1975.
25. Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells / Z. Ungvari [et al.] // Am. J. Physiol. Heart. Circ. Physiol. – 2009 Nov. – Vol. 297, N 5. – Р. H1876–H1881.
26. Das, S. Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NfkappaB / S. Das, C. G. Fraga, D. K. Das // Free. Radic. Res. – 2006. – Vol. 40, N 10. – Р. 1066–1075.
27. Resveratrol attenuates oxLDL-stimulated NADPH oxidase activity and protects endothelial cells from oxidative functional damages / S. E. Chow [et al.] // J. Appl. Physiol (1985). – 2007 Apr. – Vol. 102, N 2. – Р. 1520–1527.
28. Raj, P. An overview of the efficacy of resveratrol in the management of ischemic heart disease / P. Raj, S. Zieroth, T. Netticadan // Ann. N. Y. Acad. Sci. – 2015 Aug. – Vol. 1348, N 1. – Р. 55–67.
29. Pharmacological preconditioning with resveratrol: role of NO / R. Hattori [et al.] // Am. J. Physiol. Heart. Circ. Physiol. – 2002 Jun. – Vol. 282, N 6. – P. H1988–H1995.
30. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoids synthesis: implications for protection against coronary heart disease / C. R. Pace-Asciak [et al.] // Clin. Chem. Acta. – 1995 Mar. – Vol. 235, N 2. – P. 207–219.
31. Moreno, J. J. Resveratrol modulates arachidonic acid release, prostaglandin synthesis and 3T6 fibroblast growth / J. J. Moreno // J. Pharmacol. Exp. Ther. – 2000 Jul. – Vol. 294, N 1. – P. 333–338.
32. Olas, B. Resveratrol: a phenolic antioxidant with effects on blood platelet functions / B. Olas, B. Wachowicz // Platelets. – 2005 Aug. – Vol. 16, N 5. – P. 251–260.
33. Inhibition of cardiac fibroblast proliferation and myofibroblast differentiation by resveratrol / E. R. Olson [et al.] // Am. J. Physiol. Heart. Circ. Physiol. – 2005 Mar. – Vol. 288, N 3. – P. H1131–H1138.
34. Inhibitory effects of resveratrol on angiotensin II-induced cardiomyocyte hypertrophy / T. H. Cheng [et al.] // Naunyn. Schmiedebergs. Arch. Pharmacol. – 2004 Feb. – Vol. 369, N 2. – P. 239–244.
35. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha / M. Lagouge [et al.] // Cell. – 2006 Dec. – Vol. 127, N 6. – P. 1109–1122.
36. Antiaging properties of a Grape-derived antioxidant are regulated by mitochondrial balance of fusion and fission leading to mitophagy triggered by a signaling network of Sirt1-Sirt3-Foxo3-PINK1-PARKIN / S. Das [et al.] // Oxid. Med. Cell. Longev. – 2014. – Vol. 2014. – P. 345105.
37. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1/ M. Pacholec [et al.] // J. Biol. Chem. – 2010 Mar. – Vol. 285, N 11. – Р. 8340–8351.
38. Red wine antioxidant resveratrol-modified cardiac stem cells regenerate infarcted myocardium / N. Gurusamy [et al.] // J. Cell. Mol. Med. – 2010 Sep. – Vol. 14, N 9. – Р. 2235–2239.
39. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2 / Z. Ungvari [et al.] // Am. J. Physiol. Heart. Circ. Physiol. – 2010 Jul. – Vol. 299, N 1. – Р. H18–H24.
40. Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of NRF2-mediated antioxidant response / Z. Ungvari [et al.] // Am. J. Physiol. Heart. Circ. Physiol. – 2011 Aug. – Vol. 301, N 2. – Р. H363–H372.
41. Role of TRP channels in the cardiovascular system / Z. Yue [et al.] // Am. J. Physiol. Heart. Circ. Physiol. – 2015 Feb. – Vol. 308, N 3. – Р. Н157–Н182.
42. Modulation of TRP channels by resveratrol and other stilbenoids / L. Yu [et al.] // Mol. Pain. – 2013 Feb. – Vol. 9. – P. 3.
43. Tome-Carneiro, J. Polyphenol-based nutraceuticals for the prevention and treatment of cardiovascular disease: Review of human evidence / J. Tome-Carneiro, F. Visioli // Phytomedicine. – 2016 Oct. – Vol. 23, N 11. – Р. 1145–1174.
44. Kawabata, K. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability / K. Kawabata, R. Mukai, A Ishisaka // Food. Funct. – 2015 May. – Vol. 6, N 5. – Р. 1399–1417.
45. Quercetin, inflammation and immunity / Y. Li [et al.] // Nutrients. – 2016 Mar. – Vol. 8, N 3. – Р. 167.
46. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages / M. Hamalainen [et al.] // Mediators Inflamm. – 2007. – Vol. 2007. – P. 45673.
47. Quercetin inhibits TNF-induced NF-κB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells / P. A. Ruiz [et al.] // J. Nutr. – 2007 May. – Vol. 137, N 5. – Р. 1208–1215.
48. Quercetin inhibits inducible ICAM-1 expression in human endothelial cells through the JNK pathway / H. Kobuchi [et al.] // Am. J. Physiol. – 1999 Sep. – Vol. 277, N 3, pt. 1. – Р. C403–C411.
49. Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoforms / M. Pfeuffer [et al.] // 2013. - Nutr. Metab. Cardiovasc. Dis. –2003 May. – Vol. 23, N 5. – Р. 403–409.
50. Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation / C. H. Hung [et al.] // Mol. Nutr. Food Res. – 2015 Oct. – Vol. 59, N 10. – Р. 1905–1917.
51. The immunostimulating activity of quercetin 3-O-xyloside in murine macrophages via activation of the ASK1/MAPK/NF-κB signaling pathway / J. Lee [et al.] // Int. Immunopharmacol. – 2016 Feb. – Vol. 31. – Р. 88–97.
52. Larson, A. J. Therapeutic potential of quercetin to decrease blood pressure: Review of efficacy / A. J. Larson, J. D. Symons, T. Jalili // Adv. Nutr. – 2012 Jan. – Vol. 3, N 1. – Р. 39–46.
53. Balasuriya, N. Antihypertensive properties of flavonoid-rich apple peel extract / N. Balasuriya, H.P. Rupasinghe // Food. Chem. – 2012 Dec. – Vol. 135, N 4. – Р. 2320–2325.
54. Polyphenol protection and treatment of hypertension / H. M. Hügel [et al.] // Phytomedicine. – 2016 Feb. – Vol. 23, N 2. – Р. 220–231.
55. Quercetin improves baroreflex sensitivity in spontaneously hypertensive rats / M. M. Monteiro [et al.] // Molecules. – 2012 Nov. – Vol. 17, N 11. – Р. 12997–13008.
56. Antihypertensive effects of the flavonoid quercetin / F. Perez-Vizcaino [et al.] // Pharmacol. Rep. – 2009 Jan-Feb. – Vol. 61, N 1. – Р. 67–75.
57. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study / S. Egert [et al.] / Br. J. Nutr. – 2009 Oct. – Vol. 102, N 7. – Р. 1065–1074.
58. Quercetin inhibits angiotensin II induced apoptosis via mitochondrial pathway in human umbilical vein endothelial cells / Y. Lu [et al.] // Eur. Rev. Med. Pharmacol. Sci. – 2016 Apr. – Vol. 20, N 8. – Р. 1609–1616.
59. Chirumbolo, S. Role of quercetin in vascular physiology / S. Chirumbolo // Can. J. Physiol. Pharmacol. – 2012 Dec. – Vol. 90, N 12. – Р. 1652–1657.
60. Cholesterol metabolism is modulated by quercetin in rats / L. Zhao [et al.] // J. Agric. Food Chem. – 2011 Feb. – Vol. 59, N 4. – Р. 1104–1108.
61. de Pascual-Teresa, S. Flavanols and anthocyanins in cardiovascular health: a review of current evidence / S. de Pascual-Teresa, D. A. Moreno, C. Garcнa-Viguera // Int. J. Mol. Sci. – 2010 Apr. – Vol. 11, N 4. – Р. 1679–1703.
62. Treatment with quercetin and 3′,4′-dihydroxyflavonol inhibits platelet function and reduces thrombus formation in vivo / S. Mosawy [et al.] // J. Thromb. Thrombolysis. – 2012 Jul. – Vol. 36, N 1. – Р. 50–57.
63. Antiplasmin activity of natural occurring polyphenols / M. Mozzicafreddo [et al.] // Biochim. Biophys. Acta. – 2008 Jul-Aug. – Vol. 1784, N 7/8. – Р. 995–1001.
64. Protective roles of quercetin in acute myocardial ischemia and reperfusion injury in rats / H. B. Jin [et al.] // Mol. Biol. Rep. – 2012 Dec. – Vol. 39, N 12. – Р. 11005–11009.
65. Quality control systems in cardiac aging / E. K. Quarles [et al.] // Ageing Res. Rev. – 2015 Sep. – Vol. 23, pt. A. – P. 101–115.
66. Sheng, R. Epigallocatechin gallate, the major component of polyphenols in green tea, inhibits telomere attrition mediated cardiomyocyte apoptosis in cardiac hypertrophy / R. Sheng, Z. L. Gu, M. L. Xie // Int. J. Cardiol. – 2011 Jan. – Vol. 162, N 3. – Р. 199–209.
67. Duntas, L. H. Resveratrol and its impact on aging and thyroid function / L. H. Duntas // J. Endocrinol. Invest. – 2011 Nov. – Vol. 34, N 10. – Р. 788–792.
68. Anti-thyroid effect of resveratrol / C. Giuliani [et al.] // Endocrine Society’s 98th Annual Meeting and Expo, April 1–4, 2016, Boston. – Boston, 2016.
69. Resveratrol improved the spatial learning and memory in subclinical hypothyroidism rat induced by hemi-thyroid electrocauterization / J. F. Ge [et al.] // Endocr. J. – 2015. – Vol. 62, N 10. – Р. 927–938.
70. Resveratrol ameliorates the anxiety- and depression-like behavior of subclinical hypothyroidism rat: possible involvement of the HPT Axis, HPA Axis, and Wnt/β-Catenin pathway / J. F. Ge [et al.] // Front. Endocrinol. (Lausanne). – 2016 May. – Vol. 7. – P. 44.
71. Effects of resveratrol on human immune cell function / R. Falchetti [et al.] // Life Sci. – 2001 Nov. – Vol. 70, N 1. – Р. 81–96.
72. Resveratrol exerts no effect on inflammatory response and delayed onset muscle soreness after a marathon in male athletes: A randomised, double-blind, placebo-controlled pilot feasibility study / M. W. Laupheimer [et al.] // Transl. Med. UniSa. – 2014 Apr. – Vol. 10. – Р. 38–42.
73. Cardioprotective effects of lipoic acid, quercetin and resveratrol on oxidative stress related to thyroid hormone alterations in long-term obesity / M. J. Cheserek [et al.] // J. Nutr. Biochem. – 2016 Jul. – Vol. 33. – Р. 36–44.
74. Impact of flavonoids on thyroid function / M. C. de Souza Dos Santos [et al.] // Food Chem. Toxicol. – 2011 Oct. – Vol. 49, N 10. – Р. 2495–2502.
75. The flavonoid quercetin inhibits thyroid-restricted genes expression and thyroid function / C. Giuliani [et al.] // Food Chem. Toxicol. – 2014 Apr. – Vol. 66. – Р. 23–29.
76. van der Heide, D. Flavonoids and thyroid diseas / D. van der Heide, J. Kastelijn, J. P. Schroder-van der Elst // Biofactors. – 2003. – Vol. 19, N 3/4. – Р. 113–119.

Сведения об авторах:
Чекалина Н.И. –  к.м.н., доцент кафедры пропедевтики внутренней медицины с уходом за больными, общей практики (семейной медицины), Украинская медицинская стоматологическая академия;
Мануша Ю.И. – аспирант кафедры пропедевтики внутренней медицины с уходом за больными, общей практики (семейной медицины), Украинская медицинская стоматологическая академия.

Адрес для корреспонденции: Украина, 36000, г. Полтава, ул. Шевченко, 23, Украинская медицинская стоматологическая академия, кафедра пропедевтики внутренней медицины с уходом за больными, общей практики (семейной медицины). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Чекалина Наталья Игоревна.

Поиск по сайту