Menu

A+ A A-

Полный текст статьи

DOI: https://doi.org/10.22263/2312-4156.2019.5.12

Беляева Л.Е., Павлюкевич А.Н.
Раннее программирование заболеваний человека и использование нутрицевтиков с профилактической целью: фокус на рыбий жир. Обзор литературы. Часть 2
Витебский государственный ордена Дружбы народов медицинский университет, г. Витебск, Республика Беларусь

Вестник ВГМУ. – 2019. – Том 18, №5. – С. 12-25.

Резюме.
Во второй части обзора проанализированы и обсуждены результаты многочисленных экспериментальных, клинических и эпидемиологических исследований, посвященных изучению влияния нутрицевтиков, которые в своем составе содержат длинноцепочечные ω-3 полиненасыщенные жирные кислоты (ω-3 ПНЖК), на характер и особенности внутриутробного развития, а также эффекты, наблюдающиеся в разные периоды постнатального развития у организмов, родившихся у матерей, беременность которых протекала в неблагоприятных условиях. Рассматриваются также основные механизмы действия длинноцепочечных ω-3 ПНЖК, направленные на  минимизацию последствий, обусловленных воздействием стрессоров в пренатальном периоде, посредством  влияния этих нутрицевтиков на процесс воспаления, окислительный стресс, организацию структурных компонентов клетки, а также участия в эпигенетической регуляции экспрессии генов и программировании различных форм патологии в целом.
Ключевые слова: омега-3 полиненасыщенные жирные кислоты, пренатальный стресс, окислительный стресс, системное воспаление низкой интенсивности, липидные «рафты», кавеолы, эпигенетические механизмы.

Литература

1. Low-grade, systemic inflammation in adolescents: association with early-life factors, gender, and lifestyle / J. Pirkola [et al.] // Am. J. Epidemiol. – 2010 Jan. – Vol. 171, N 1. – P. 72–82.
2. Prenatal and early postnatal stress and later life inflammation / J. M. Pedersen [et al.] // Psychoneuroendocrinology. – 2018 Feb. – Vol. 88. – P. 158–166.
3. Staud, F. Trophoblast: The central unit of fetal growth, protection and programming / F. Staud, R. Karahoda // Int. J. Biochem. Cell. Biol. – 2018 Dec. – Vol. 105. – P. 35–40.
4. Maternal pregnancy C-reactive protein predicts offspring birth size and body composition in metropolitan Cebu, Phillipines / C. W. Kuzawa [et al.] // J. Dev. Orig. Health. Dis. – 2017 Dec. – Vol. 8, N 6. – P. 674–681.
5. Up-regulation of renal renin-angiotensin system and inflammatory mechanisms in the prenatal programming by low-protein diet: beneficial effect of the post-weaning losartan treatment / I. K. M. Watanabe [et al.] // J. Dev. Orig. Health Dis. – 2018 Oct. – Vol. 9, N 5. – P. 530–535.
6. Epigenetics and preeclampsia: programming of future outcomes / A. B. Peixoto [et al.] // Methods Mol. Biol. – 2018. – Vol. 1710. – P. 73–83.
7. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats / J. L. Tarry-Adkins [et al.] // Dis. Model Mech. – 2016 Oct. – Vol. 9, N 10. – P. 1221–1229.
8. Social and physical environments early in development predict DNA methylation of inflammatory genes in young adulthood / T. W. McDade [et al.] // Proc. Natl. Acad. Sci. USA. – 2017 Jul. – Vol. 114, N 29. – P. 7611–7616.
9. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells / M. Bouwens [et al.] // Am. J. Clin. Nutr. – 2009 Aug. –Vol. 90, N 2. – P. 415–424.
10. Sigal, L. H. Basic science for the clinician 39: NF-kappa B-function, activation, control, and consequences / L. H. Sigal // J. Clin. Rheumatol. – 2006 Aug. – Vol. 12, N 4. – P. 207–211.
11. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology / C. N. Serhan // Nature. – 2014 Jun. – Vol. 510, N 7503. – P. 92–101.
12. Grygiel-Gуrniak, B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications – a review / B. Grygiel-Gуrniak // Nutr. J. – 2014 Feb. – Vol. 13. – P. 17.
13. Abedi, E. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties / E. Abedi, M. A. Sahari // Food Sci. Nutr. – 2014 Sep. – Vol. 2, N 5. – P. 443–463.
14. Haast, R. A. Impact of fatty acids on brain circulation, structure and function / R. A. Haast, A. J. Kiliaan // Prostaglandins Leukot. Essent. Fatty Acids. – 2015 Jan. – Vol. 92. – P. 3–14.
15. Omega-3 fatty acids suppress Fusobacterium nucleatum-induced placental inflammation originating from maternal endothelial cells / J. Garcia-So [et al.] // JCI Insight. – 2019 Feb. – Vol. 4, N 3. – pii: 125436.
16. Maternal and postnatal supplementation of fish oil improves metabolic health of mouse male offspring / L. Ramalingam [et al.] // Obesity (Silver Spring). – 2018 Nov. – Vol. 26, N 11. – P. 1740–1748.
17. Effects of prenatal n-3 fatty acid supplementation on offspring resolvins at birth and 12 years of age: a double-blind, randomised controlled clinical trial / V. H. L. See [et al.] // Br. J. Nutr. – 2017 Dec. – Vol. 118, N 11. – P. 971–980.
18. Decreased cord blood IL-4, IL-13, and CCR4 and increased TGF-beta levels after fish oil supplementation of pregnant women / S. Krauss-Etschmann [et al.] // J. Allergy Clin. Immunol. – 2008 Feb. – Vol. 121, N 2. – P. 464-470.
19. Thompson, L. P. Impact of oxidative stress in fetal programming / L. P. Thompson, Y. Al-Hazan // J. Pregnancy. – 2012. – Vol. 2012. – P. 582748.
20. Schafer, F. Q. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple / F. Q. Schafer, G. R. Buettner // Free Radic. Biol. Med. – 2001 Jun. – Vol. 30, N 11. – P. 1191–1212.
21. Association between prenatal psychological stress and oxidative stress during pregnancy // S. M. Eick [et al.] // Paediatr. Perinat. Epidemiol. – 2018 Jul. – Vol. 32, N 4. – P. 318–326.
22. Mitochondrial dysfunction: maternal protein restriction as a trigger of reactive species overproduction and brainstem energy failure in male offspring brainstem / D. J. S. Ferreira [et al.] // Nutr. Neurosci. – 2018 Mar. – P. 1–11.
23. Ramaiyan, B. Dietary omega-3 but not omega-6 fatty acids down-regulate maternal dyslipidemia induced oxidative stress: a three generation study in rats // B. Ramaiyan, S. Bettadahalli, R. R. Talahalli // Biochem. Biophys. Res. Commun. – 2016 Sep. – Vol. 477, N 4. – P. 887–894.
24. Omega-3 LCPUFA supplement: a nutritional strategy to prevent maternal and neonatal oxidative stress / N. Kajarabille [et al.] // Matern. Child Nutr. – 2017 Apr. – Vol. 13, N 2.
25. Fish oil supplementation in pregnancy lowers F2-isoprostanes in neonates at high risk of atopy / A. E. Barden [et al.] // Free Radic. Res. – 2004 Mar. – Vol. 38, N 3. – P. 233–239.
26. Singer, S. J. The fluid mosaic model of the structure of cell membranes / S. J. Singer, G. L. Nicolson // Science. – 1972 Feb. – Vol. 175, N 4023. – P. 720–731.
27. The concept of lipid domains in membranes / M. J. Karnovsky [et al.] // J. Cell. Biol. – 1982 Jul. – Vol. 94, N 1. – P. 1–6.
28. Sonnino, S. Membrane domains and the «lipid raft» concept / S. Sonnino, A. Prinetti // Curr. Med. Chem. – 2013. – Vol. 20, N 1. – P. 4–21.
29. Sohn, J. From embryonic development to human diseases: the functional role of caveolae/caveolin / J. Sohn, R. M. Brick, R. S. Tuan // Birth Defects Res. C. Embryo Today. – 2016 Mar. – Vol. 108, N 1. – P. 45–64.
30. Itokazu, Y. Epigenetic regulation of ganglioside expression in neural stem cells and neuronal cells / Y. Itokazu, YT Tsai, R. K. Yu // Glycoconj. J. – 2017 Dec. – Vol. 34, N 6. – P. 749–756.
31. Bowen, R. A. Dietary low linolenic acid compared with docosahexaenoic acid alter synaptic plasma membrane phospholipid fatty acid composition and sodium-potassium ATPase kinetics in developing rats / R. A. Bowen, M. T. Clandinin // J. Neurochem. – 2002 Nov. – Vol. 83, N 4. – P. 764–774.
32. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice / K. R. Jonscher [et al.] // FASEB J. – 2017 Apr. – Vol. 31, N 4. – P. 1434–1448.
33. Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet / F. Kasbi-Chadli [et al.] // Eur. J. Nutr. – 2016 Mar. – Vol. 55, N 2. – P. 589–599.
34. n-3 polyunsaturated fatty acids reduce neonatal hypoxic/ischemic brain injury by promoting phosphatidylserine formation and Akt signaling / W. Zhang [et al.] // Stroke. – 2015 Oct. – Vol. 46, N 10. – P. 2943–2950.
35. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation / S. R. Wassall [et al.] // Biochim. Biophys. Acta Biomembr. – 2018 Oct. – Vol. 1860, N 10. – P. 1985–1993.
36. Perturbations in endothelial dysfunction-associated pathways in the nitrofen-induced congenital diaphragmatic hernia model / S. Zhaorigetu [et al.] // J. Vasc. Res. – 2018. – Vol. 55, N 1. – P. 26–34.
37. The early nutritional environment of mice determines the capacity for adipose tissue expansion by modulating genes of caveolae structure / L. P. Kozak [et al.] // PLoS ONE. – 2010 Jun. – Vol. 5, N 6. – P. e11015.
38. Tyrosine phosphorylation of caveolin 1 by oxidative stress is reversible and dependent on the c-src tyrosine kinase but not mitogen-activated protein kinase pathways in placental artery endothelial cells / D. B. Chen [et al.] // Biol. Reprod. – 2005 Oct. – Vol. 73, N 4. – P. 761–772.
39. Docosahexaenoic acid affects endothelial nitric oxide synthase in caveolae / Q. Li [et al.] // Arch. Biochem. Biophys. – 2007 Oct. – Vol. 466, N 2. – P. 250–259.
40. Extracellular vesicles in the intrauterine environment: challenges and potential functions / H. P. Nguen [et al.] // Biol. Reprod. – 2016 Nov. – Vol. 95, N 5. – P. 109.
41. Microparticles hyperactivity in a case of intrauterine growth restriction / V. Makris [et al.] // Clin. Exp. Obstet. Gynecol. – 2015. – Vol. 42, N 2. – P. 231–233.
42. Increased circulating microparticles in women with preeclampsia / Y. Zhang [et al.] // Int. J. Lab. Hematol. – 2018 Jun. – Vol. 40, N 3. – P. 352–358.
43. Adipose tissue exosomal proteomic profile reveals a role on placenta glucose metabolism in gestational diabetes mellitus / N. Jayabalan [et al.] // Clin. Endocrinol. Metab. – 2019 May. – Vol. 104, N 5. – P. 1735–1752.
44. Fish-oil supplementation alters numbers of circulating endothelial progenitor cells and microparticles independently of eNOS genotype / S. Y. Wu [et al.] // Am. J. Clin. Nutr. – 2014 Nov. – Vol. 100, N 5. – P. 1232–1243.
45. Acute supplementation with eicosapentaenoic acid reduces platelet microparticle activity in healthy subjects / M. Phang [et al.] // J. Nutr. Biochem. – 2012 Sep. – Vol. 23, N 9. – P. 1128–1133.
46. Low neonatal plasma n-6/n-3 PUFA ratios regulate offspring adipogenic potential and condition adult obesity resistance / M. C. Rudolph [et al.] // Diabetes. – 2018 Apr. – Vol. 67, N 4. – P. 651–661.
47. Maternal n-3 polyunsaturated fatty acid deprivation during pregnancy and lactation affects neurogenesis and apoptosis in adult offspring: associated with DNA methylation of brain-derived neurotrophic factor transcripts / C. Fan [et al.] // Nutr. Res. – 2016 Sep. – Vol. 36, N 9. – P. 1013–1021.
48. Genome-wide methylation profile following prenatal and postnatal dietary omega-3 fatty acid supplementation in pigs / R. L. Boddicker [et al.] // Anim. Genet. – 2016 Dec. – Vol. 47, N 6. – P. 658–671.
49. Dietary supplementation with polyunsaturated fatty acid during pregnancy modulates DNA methylation at IGF2/H19 imprinted genes and growth of infants / H.-S. Lee [et al.] // Physiol. Genomics. – 2014 Dec. – Vol. 46, N 23. – P. 851–857.
50. Effect of prenatal DHA supplementation on the infant epigenome: results from a randomized controlled trial / S. J. van Dijk [et al.] // Clin. Epigenetics. – 2016 Nov. – Vol. 8. – P. 114.
51. The role of PKCζ in cord blood T-cell maturation towards Th1 cytokine profile and its epigenetic regulation by fish oil / H. Harb [et al.] // Biosci. Rep. – 2017 Mar. – Vol. 37, N 2. – pii: BSR20160485.
52. Consumption of distinct dietary lipids during early pregnancy differentially modulates the expression of microRNAs in mothers and offspring / P. Casas-Agustench [et al.] // PLOS One. – 2015 Feb. – Vol. 10, N 2. – P. e0117858.
53. Omega-3 fatty acid addition during pregnancy / P. Middleton [et al.] // Cochrane Database Syst. Rev. – 2018 Nov. – Vol. 11. – CD003402.
54. Serum omega-3 fatty acids and treatment outcomes among women undergoing assisted reproduction / Y. H. Chiu [et al.] // Hum. Reprod. – 2018 Jan. – Vol. 33, N 1. – P. 156–165.
55. Rioux, F. M. Does inadequate maternal iron or DHA status have a negative impact on an infant’s functional outcomes? / F. M. Rioux, G. Lindmark, O. Hernell // Acta Paediatrica. – 2006. – Vol. 95, N 2. – P. 137–144.
56. Fernstrom, J. D. Effects of dietary polyunsaturated fatty acids on neuronal function / J. D. Fernstrom // Lipids. – 1999 Feb. – Vol. 34, N 2. – P. 161–169.
57. Transgenic overproduction of omega-3 polyunsaturated fatty acids provides neuroprotection and enhances endogenous neurogenesis after stroke / X. Hu [et al.] // Curr. Mol. Med. – 2013 Nov. – Vol. 13, N 9. – P. 1465–1473.
58. Long-term effects of perinatal essential fatty acid deficiency on anxiety-related behavior in mice / V. Palsdottir [et al.] // Behav. Neurosci. – 2012 Apr. – Vol. 126, N 2. – P. 361–369.
59. Effect of n-3 long-chain polyunsaturated fatty acids intake during pregnancy on maternal, infant, and child health outcomes: a systematic review / B. Imhoff-Kunsh [et al.] // Paediatr. Perinat. Epidemiol. – 2012 Jul. – Vol. 26, suppl. 1. – P. 91–107.
60. Dietary intake of DHA during pregnancy: a significant gap between the actual intake and current nutritional recommendations / R. Wierzejska [et al.] // Rocz. Panstw. Zakl. Hig. – 2018. – Vol. 69, N 4. – P. 381–386.
61. Very low inadequate dietary intakes of essential n-3 polyunsaturated fatty acids (PUFA) in pregnant and lactating French women: The INCA2 survey / J. Tressou [et al.] // Prostaglandins Leukot. Essent. Fatty Acids. – 2019 Jan. – Vol. 140. – P. 3–10.
62. Kominiarek, M. A. Nutrition recommendations in pregnancy and lactation / M. A. Kominiarek, P. Rajan // Med. Clin. North Am. – 2016 Nov. – Vol. 100, N 6. – P. 1199–1215.
63. DHA mitigates autistic behaviors accompanied by dopaminergic change in a gene / prenatal stress mouse model / F. Matsui [et al.] // Neuroscience. – 2018 Feb. – Vol. 371. – P. 407–419.
64. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid / J. Gao [et al.] // J. Nutr. Biochem. – 2016 Sep. – Vol. 35. – P. 87–95.
65. Maternal supplementation with very-long chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age / I. B. Helland [et al.] // Pediatrics. – 2003 Jan. – Vol. 111, N 1. – P. e39–e44.
66. The effect of prenatal docosahexaenoic acid supplementation on infant outcomes in African American women living in low-income environments: A randomized, controlled trial / K. Keenan [et al.] // Psychoneuroendocrinology. – 2016 Sep. – Vol. 71. – P. 170–175.
67. N-3 long chain polyunsaturated fatty acids increase the expression of PPARg-target genes and resistance of isolated heart and cultured cardiomyocytes to ischemic injury / A. M. Shysh [et al.] // Pharmacol. Rep. – 2016 Dec. – Vol. 68, N 6. – P. 1133–1139.
68. Higher oily fish consumption in late pregnancy is associated with reduced aortic stiffness in the child at age 9 years / J. Bryant [et al.] // Circ. Res. – 2015 Mar. – Vol. 116, N 7. – P. 1202–1205.
69. The effect of maternal fish oil supplementation during the last trimester of pregnancy on blood pressure, heart rate and heart rate variability in the 19-year-old offspring / D. Rytter [et al.] // Br. J. Nutr. – 2012 Oct. – Vol. 108, N 8. – P. 1475–1483.
70. Bioavailability of n-3 fatty acids from n-3-enriched foods and fish oil with different oxidative quality in healthy human subjects: a randomised single-meal cross-over study / I. Ottestad [et al.] // J. Nutr. Sci. – 2016 Oct. – Vol. 5. – P. e43.

Сведения об авторах:
Беляева Л.Е. – к.м.н., доцент, заведующая кафедрой патологической физиологии, Витебский государственный ордена Дружбы народов медицинский университет;
Павлюкевич А.Н. – м.м.н., ассистент кафедры патологической физиологии, Витебский государственный ордена Дружбы народов медицинский университет.

Адрес для корреспонденции: Республика Беларусь, 210009, г. Витебск, пр. Фрунзе, 27, Витебский государственный ордена Дружбы народов медицинский университет, кафедра патологической физиологии. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Беляева Людмила Евгеньевна.
                                                                     

 

Поиск по сайту