Menu

A+ A A-

Download article

Kulikov V.A., Belyaeva L.E.
Signalling cascades, oncogenes, oncosuppressor genes and cancer cells metabolism

Abstract.
Objectives. To characterize the intracellular signalling cascades responsible for cancer cells metabolism and inter- relation of these signalling cascades with oncogenes, oncosuppressor genes and transcription factors.
Material and methods. Analysis of the scientific articles published during the last 10 years.
Results. Metabolic changes in cancer cells often result from different mutations activating oncogenes or inactivating  oncosuppressor genes. Activation of Akt proteinkinase, G-proteins belonging to the Ras family, transcription factors HIF-1 and cMyc or inactivation of the transcription factor p53 form the peculiar «pentad» responsible for the development of glycolytic phenotype in cancer cells. Functional activity of this «pentad» depends on numerous intracellular signalling cascades triggered by hypoxia, excess or deficiency of nutrients, cytokines and growth factors. On the contrary, activation of АМPК can stimulate oxidative metabolism in cancer cells with the subsequent suppression of their growth and division. Co-operative and antagonistic interrelations exist between oncogenes, oncosuppressor genes, transcription factors and signalling cascades of cancer cells.  
Conclusions. Studying the pathways regulating cancer cells metabolism inevitably promotes our understanding of mechanisms of cancer cells development and progression and outlines new approaches to the treatment of malignancies.
Key words: metabolism, cancer, oncogenes, oncosuppressor genes.

References

1. Kulikov VA, Beliaev LE. Metabolicheskoe pereprogrammirovanie rakovykh kletok [Metabolic reprogramming of cancer cells]. Vestn. VGMU. 2013;12(2):6-18.
2. Robey RB, Hay N. Is Akt the Warburg kinase-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol. 2009 Feb;19(1):25-31.
3. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997 Oct;91(2):231-41.
4. Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 2001 Nov;3(11):973-82.
5. Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003 Aug;17(15):1829-34.
6. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004 Jun;64:3892–99.
7. Robey RB, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncgene. 2006;25(4):4683-96.
8. Edinger AL, Thompson CB. Akt maintains cell size and survival byincreasing mTOR-dependent nutrient uptake. Mol Biol Cell. 2002 Jul;13(7):2276-88.
9. Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20(1):51-6.
10. Zhang W, Patil S, Chauhan B, Guo S, Powell DR, Le J, Klotsas A, Matika R, Xiao X, Franks R, Heidenreich KA, Sajan MP, Farese RV, Stolz DB, Tso P, Koo SH, Montminy M, Unterman TG. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem. 2006 Apr;281(15):10105-17.
11. Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB. ATP citrate lyase is an important component of cell growth and transformation. Oncogene. 2005 Sep;24(41):6314-22.
12. Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J, Schulze A. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene. 2005 Sep;24(43):6465-81.
13. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 2008 Jun;13(6):472-82.
14. Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005 Nov;123(4):569-80.
15. Meijer AJ. Autophagy research: lessons from metabolism. Autophagy. 2009 Jan;5(1):3-5.
16. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004 Apr;64(7):2627-33.
17. Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D. Glycolytic enzymes can modulate cellular lifespan. Cancer Res. 2005 Jan;65(1):177-85.
18. Green DR, Chipuk JE. p53 and metabolism: Inside the TIGAR. Cell. 2006 Jul;126(1):30-2.
19. Mathupala SP, Heese C, Pedersen PL. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem. 1997 Sep;272(36):22776-80.
20. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM. p53 regulates mitochondrial respiration. Science. 2006 Jun;312(5780):1650-3.
21. Kulawiec M, Ayyasamy V, Singh KK. p53 regulates mtDNA copy number and mitocheckpoint pathway. J Carcinog. 2009;8:8.
22. Crighton D, Wilkinson S, Ryan KM. DRAM links autophagy to p53 and programmed cell death. Autophagy. 2007 Jan-Feb;3(1):72-4.
23. Feng Z, Levine AJ. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol. 2010 Jul;20(7):427-34.
24. Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A, Vicencio JM, Soussi T, Kroemer G. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle. 2008 Oct;7(19):3056-61.
25. Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, Viollet B, Thompson CB. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cel growth. Cancer Res. 2007 Jul;67(14):6745-52.
26. Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, Sugano S, Sato E, Nagao T,Yokote K, Tatsuno I, Prives C. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci U S A. 2010 Apr;107(16):7461-6.
27. Vousden KH. Alternative fuel – another role for p53 in the regulation of metabolism. Proc Natl Acad Sci U S A. 2010 Apr;107(16):7117-8.
28. Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008 Aug;134(3):451-60.
29. Kong M, Fox CJ, Mu J, Solt L, Xu A, Cinalli RM, Birnbaum MJ, Lindsten T, Thompson CB. The PP2A-associated protein alpha4 is an essential inhibitor of apoptosis. Science. 2004 Oct;306(5696):695-8.
30. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005 Apr;18(3):283-93.
31. Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, Levine AJ. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and therole of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 2007 Apr;67(7):3043-53.
32. Lee CH, Inoki K, Karbowniczek M, Petroulakis E, Sonenberg N, Henske EP, Guan KL. Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation and genomic damage viap53. EMBO J. 2007 Nov;26(23):4812-23.
33. Feng Z, Levine AJ. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol. 2010 Jul;20(7):427-34.
34. Hezel AF, Bardeesy N. LKB; 1linking cell structure and tumor suppression. Oncogene. 2008 Nov;27(55):6908-19.
35. Hardie DG, Alessi DR. LKB1 and AMPK and the cancer-metabolism link – ten years after. BMC Biology. 2013;11:36.
36. Shackelford DB, Vasquez DS, Corbeil J, Wu S, Leblanc M, Wu CL, Vera DR, Shaw RJ. mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc Natl Acad Sci U S A. 2009 Jul;106(27):11137-42.
37. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, Mamer OA, Avizonis D, DeBerardinis RJ, Siegel PM, Jones RG. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013 Jan;17(1):113-24.
38. Vaupel P, Mayer A, Höckel M. Tumor hypoxia and malignant progression. Methods Enzymol. 2004;381:335-54.
39. Zhao F, Mancuso A, Bui TV, Tong X, Gruber JJ, Swider CR, Sanchez PV, Lum JJ, Sayed N, Melo JV, Perl AE, Carroll M, Tuttle SW, Thompson CB. Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene. 2010 May;29(20):2962-72.
40. Dang CV, Kim JW, Gao P, Yustein J. The interplay between MYC and HIF in cancer. Nat Rev Cancer. 2008;8(1):51-6.
41. Brugarolas J, Lei K, Hurley RL, Manning BD,  Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressorcomplex. Genes Dev. 2004 Dec;18(23):2893-904.
42. Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F, Haber DA. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell. 2002 Nov;10(5):995-1005.
43. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006 Jul;126(1):107-20.
44. Kim JW, Gao P, Liu YC, Semenza GL, Dang CV. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factorand metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 2007 Nov;27(21):7381-93.
45. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009 Apr;458(7239):762-5.
46. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma byrepression of C-MYC activity. Cancer Cell. 2007 May;11(5):407-20.
47. Sherr CJ. D1 in G2. Cell Cycle. 2002 Jan;1(1):36-8.
48. Sodhi A, Montaner S, Miyazaki H, Gutkind JS. MAPK and Akt act cooperatively but independently on hypoxia inducible factor-1alpha in rasV12 upregulation of VEGF. Biochem Biophys Res Commun. 2001 Sep;287(1):292-300.
49. Yang D, Wang MT, Tang Y, Chen Y, Jiang H, Jones TT, Rao K, Brewer GJ, Singh KK, Nie D. Impairment of mitochondrial respiration in mouse fibroblasts by oncogenic H-RAS(Q61L). Cancer Biol Ther. 2010 Jan;9(2):122-33.
50. Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, Alberghina L, Stephanopoulos G, Chiaradonna F. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. 2011 Aug;7:523.

Поиск по сайту