Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2016.2.67

Nekhlopochin A.S.*, Shvets A.I.*, Nekhlopochin S.N.**, Shapovalov V.D.***
Evaluation scale of constructional parameters and functional possibilities of body replacement endoprostheses for anterior interbody spondylosyndesis
*State Establishment «Lugansk Clinical Hospital», Lugansk, Ukraine
**State Establishment «Lugansk State Medical University», Lugansk, Ukraine
***State Educational Establishment of Higher Professional Education «Lugansk State University named after V.Dal», Lugansk, Ukraine

Vestnik VGMU. 2016;15(2):67-76.

Abstract.
Objectives. To develop the evaluation scale of constructional parameters and functional possibilities of the endoprostheses of the vertebral bodies for the optimal choice of the implant construction in case of reconstructive interventions on the backbone.
Material and methods. The analysis of the literature describing constructional features of 25 types of endoprostheses of the vertebral bodies has been made. The system of the valuation of the implant characteristics has been proposed. The most rational signs of their constructions have been determined. Each of the highlighted parameters has been evaluated in points. On the basis of the obtained information the evaluation scale has been developed.  
Results. This scale provides for the analysis of such characteristics of body replacement implants as reconstruction, stabilization, creation of the conditions for the bone regeneration.
The most reasonable criteria include: minimum size, the presence of the internal cavity of considerable sizes for the filler, providing a significant contact area in the system of the filler-body of the vertebra with the aim of creating  the conditions for the formation of an adequate bone block, sufficient firmness, a small metal consumption and light weight, productibility in the manufacture and simplicity in operation.
Conclusions. The evaluation scale of implants design for anterior interbody spondylosyndesis allows to choose the features of constructions that can be determined visually by a surgeon, without the help of any information sources. The total score reflects the level of effectiveness of cages. The presented tool allows the surgeon to focus his/her attention on the advantages and problematic features of various implants with the purpose of the objective selection of an implant in each clinical situation.
Key words: evaluation scale, constructional parameters, functional possibilities, vertebral body replacement endoprostheses.

References

1. Korzh AA, Gruntovskiy GKh, Korzh NA, Mykhayliv TV. Keramoplastika v ortopedii i travmatologii [Ceramoplastics in orthopedics and traumatology]. Lviv, Ukraine: Svit; 1992. 112 р.
2. XPand® Corpectomy Spacer [Internet]. Globus Medical. 2014. [cited 2015 May 12]. Available from: http://www.globusmedical.com/portfolio/xpand-r.
3. Aganesov AG, Meskhi KT. Rekonstruktivnaia khirurgiia pozvonochnika [Reconstructive surgery of a backbone]. Annaly Ros Nauch tsentra khirurgii RAMN. 2004;(1):114-23.
4. Narotam PK, Pauley SM, McGinn GJ. Titanium mesh cages for cervical spine stabilization after corpectomy: a clinical and radiological study. J Neurosurg. 2003 Sep;99(2 Suppl):172-80.
5. Barysh AE, Buznitskiy RI. Oshibki i oslozhneniia pri ispol'zovanii zapolnennykh autokost'iu tsilindricheskikh implantatov v khirurgii sheinogo otdela pozvonochnika [Mistakes and complications when using of the cylindrical implants filled with an autokost in surgery of cervical department of a backbone]. Ortopediia, travmatologiia i protezirovanie. 2011;(4):29-33.
6. Byvaltsev VA, Sorokovikov VA, Kalinin AV, Belykh EG. Analiz rezul'tatov perednego sheinogo spondilodeza s ispol'zovaniem gibridnogo keidzha RSV Evolution za dvukhletnii period [The analysis of results of a forward cervical spondilodez with hybrid Cage's use RSV Evolution for the two-year period]. Zhurn Voprosy Neirokhirurgii im NN Burdenko. 2013;77(1):37-45.
7. Mohammad-Shahi MH, Nikolaou VS, Giannitsios D, Ouellet J, Jarzem PF. The Effect of Angular Mismatch Between Vertebral Endplate and Vertebral Body Replacement Endplate on Implant Subsidence. J Spinal Disord Tech. 2013 Jul;26(5):268-73.
8. Laouissat F, Allain J, Delécrin J. Intraoperative determination of lumbar prosthesis endplate lordotic angulation to improve motion. Orthop Traumatol Surg Res. 2015 Feb;101(1):109-13.
9. Matveev AN, Glukhikh DL. Kombinirovannyi perednii spondilodez v lechenii travmy sheinogo otdela pozvonochnika [Combined forward спондилодез in treatment of a trauma of cervical department of a backbone]. Khirurgiia pozvonochnika. 2006;(3):24-8.
10. Samandouras G, Shafafy M, Hamlyn PJ. A new anterior cervical instrumentation system combining an intradiscal cage with an integrated plate: an early technical report. Spine (Phila Pa 1976). 2001 May;26(10):1188-92.
11. Hasegawa K, Abe M, Washio T, Hara T. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density. Spine (Phila Pa 1976). 2001 Apr;26(8):957-63.
12. Pekmezci M, McDonald E, Kennedy A, Dedini R, McClellan T, Ames C et al. Can a novel rectangular footplate provide higher resistance to subsidence than circular footplates? An ex vivo biomechanical study. Spine (Phila Pa 1976). 2012 Sep;37(19):E1177-81.
13. ТeCorpTM Teleskopicheskaia korporektomicheskaia sistema [ТeCorpTM Telescopic korporektomichesky system]: ruk po khirurg metodike [Elektronnyi resurs]. Rezhim dostupa: http://www.alphatecspine.ru/images/stories/photos/tehopertecorp.pdf. Data dostupa: 05.01.2015.
14. Gaydar BV, Dulaev AK, Orlov VP, Nadulich KA, Teremshonok AV. Khirurgicheskoe lechenie patsientov s povrezhdeniiami pozvonochnika grudnoi i poiasnichnoi lokalizatsii [Surgical treatment of patients with injuries of a backbone of thoracal and lumbar localization]. Khirurgiia pozvonochnika. 2004(3):40-5.
15. Shvets AI, Ivchenko VK, Samoilenko AA. Primenenie implantatov v khirurgii pozvonochnika [Use of implants in backbone surgery]. Ukr Zhurn Ekstremal'noї Meditsini іm GO Mozhaєva. 2009:10(3):65-70.
16. Kandziora F, Pflugmacher R, Scholz M, Schäfer J, Schollmeier G, Schnake KJ et al. Experimental fusion of the sheep cervical spine. Part I: Effect of cage design on interbody fusion. Chirurg. 2002 Sep;73(9):909-17.
17. Fischer CR, Cassilly R, Cantor W, Edusei E, Hammouri Q, Errico T. A systematic review of comparative studies on bone graft alternatives for common spine fusion procedures. Eur Spine J. 2013 Jun;22(6):1423-35.
18. Kim DH, Vaccaro AR, Fessler RG. Spinal Instrumentation: surgical Techniques. New York: Thieme; 2005. 1330 p.
19. Omeis I, DeMattia JA, Hillard VH, Murali R, Das K. History of instrumentation for stabilization of the subaxial cervical spine. Neurosurg Focus. 2004 Jan;16(1):E10.
20. XRL Vertebral body replacement device: a modular expandable radiolucent vertebral body replacement system [Internet]. DePuy Synthes. 2015-2016. [cited 2015 Jan 05]. Available from: http://www.synthes.com/sites/NA/NAContent/Docs/Product%20Support%20Materials/Technique%20Guides/SPTGXRLJ11184C.pdf.
21. Penzkofer R, Hofberger S, Spiegl U, Schilling C, Schultz R, Augat P et al. Biomechanical comparison of the end plate design of three vertebral body replacement systems. Arch Orthop Trauma Surg. 2011 Sep;131(9):1253-9.
22. Rerikh VV, Lastevskiy AD. Khirurgicheskoe lechenie povrezhdenii nizhne-sheinogo otdela pozvonochnika [Surgical treatment of damages of lower cervical department of a backbone]. Khirurgiia pozvonochnika. 2007;(1):13-20.
23. Nekhlopochin AS, Ivchenko DV, Ivchenko VK, Shvets AI, Nekhlopochin SN. Pervyi opyt klinicheskogo primeneniia teleskopicheskikh telozameshchaiushchikh endoprotezov dlia ventral'nogo subaksial'nogo spondilodeza [The first experience of a clinical use telescopic the telozameshchayushchikh of an endoprosthesis for a ventral subaxial spondilodez]. Vertebrologiia v Rossii: itogi i perspektivy razvitiia: sb tez V s"ezda khirurgov-vertebrologov Rossii Saratov 23-24 maia 2014 g. Saratov, RF; 2014. Р. 128-30.
24. Riaz S, Fox R, Lavoie MV, Mahood JK. Vertebral body reconstruction for thoracolumbar spinal metastasis--a review of techniques. J Ayub Med Coll Abbottabad. 2006 Jan-Mar;18(1):70-7.
25. Abulkhanov SR, Goryainov DS, Strelkov YuS. Optimizatsiia formy allotransplantata pozvonka s pomoshch'iu 3D modelirovaniia [Optimization of a form of an allotransplant of a vertebra by means of 3D modeling]. Izv Samar Nauch Tsentra Ros Akad Nauk. 2013;15(4):236–241.
26. Kandziora F1, Pflugmacher R, Schaefer J, Scholz M, Ludwig K, Schleicher P et al.  Biomechanical comparison of expandable cages for vertebral body replacement in the cervical spine. J Neurosurg. 2003 Jul;99(1 Suppl):91-7.

Поиск по сайту