Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2018.1.43

Bon L.I., Maksimovich N.Ye., Zimatkin S.M.
Cytochemical disturbances in the parietal cortex and hippocampus of rats after incomplete ischemia
Grodno State Medical University, Grodno, Republic of Belarus

Vestnik VGMU. 2018;17(1):43-49.

Abstract.
Cerebrovascular diseases, including stroke, take a leading position in the structure of morbidity and mortality in the whole world. Solving the problem of stroke requires an in-depth study of its pathogenesis, for which it is necessary to identify morphofunctional changes at the cellular, subcellular and molecular levels.
Objectives. To study energy disorders of neurons of the parietal cortex and hippocampus of rats with subtotal cerebral ischemia.
Material and methods. The experiments were performed on white female rats weighing 230±20 g. The use of rats as experimental animals is determined by the similarity of angioarchitectonics and morphology of the cerebral cortex in rats and humans. Incomplete cerebral ischemia was modelled by ligation of both common carotid arteries under intravenous thiopental anesthesia (40-50 mg / kg).
Results. Incomplete cerebral ischemia leads to a change of metabolism in the neurons of the parietal cortex and the hippocampus. In the cytoplasm of the neurons of the parietal cortex and the hippocampus, the dehydrogenases activity decreases: that of NADH, succinate, glucose-6-phosphate; lactate dehydrogenase and acid phosphatase activity increases.
Conclusions. Thus, incomplete ischemia of the brain leads to severe energy deficiency of the neurons of the parietal cortex and hippocampus of rats. To a greater extent these disturbances are expressed in the parietal cortex, the neurons of which are more sensitive to lack of oxygen.
Key words: cytochemical disorders, parietal cortex, hippocampus, ischemia.

References

1. Sacco SE, Whisnant JP, Broderick JP, Phillips SJ, O'Fallon WM. Epidemiological characteristics of lacunar infarcts in a population. Stroke. 1991 Oct;22(10):1236-41.
2. White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci. 2000 Oct 1;179(S 1-2):1-33.
3. Chalmers GR, Roy RR, Edgerton VR. Adaptability of the oxidative capacity of motoneurons. Brain Res. 1992 Jan;570(1-2):1-10.
4. Zavodnik IB, Dremza IK, Cheshchevik VT, Lapshina EA, Zamaraewa M. Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca2+ ions in oxidative processes. Life Sci. 2013 Jun;92(23):1110-7. doi: http://dx.doi.org/10.1016/j.lfs.2013.04.009
5. Maksimovich NY, Dremza IK, Troian EI, Maksimovich YN, Borodinskiĭ AN. The Correcting Effects of Dihydroquercetin in Cerebral Ischemia-Reperfusion Injury. Biomed Khim. 2014 Nov-Dec;60(6):643-50.
6. Directive 2010/63/EU of the Ruropean Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes: (text with EEA relevance). Official J Eur Union. 2010 Oct;53(L 276):33-79.
7. Pirs E. Histochemistry: theoretical and applied. Moscow, RF: Izd-vo inostran lit; 1962. 962 р. (In Russ.)
8. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. London: Academic Press; 2007. 456 p.
9. Batin NV. Computer statistical data analysis: ucheb-metod posobie. Minsk, RB: In-t podgot nauch kadrov NAN Belarusi; 2008. 160 р. (In Russ.)
10. Gallyas F, Pál J, Bukovics P. Supravital microwave experiments support that the formation of «dark» neurons is propelled by phase transition in an intracellular gel system. Brain Res. 2009 May;1270:152-6. doi: http://dx.doi.org/10.1016/j.brainres.2009.03.020
11. Giffard RG, Swanson RA. Ischemia-induced programmed cell death in astrocytes. Glia. 2005;50(4):299-306.
12. Baracskay P, Szepesi Z, Orbán G, Juhász G, Czurkó A. Generalization of seizures parallels the formation of "dark" neurons in the hippocampus and pontine reticular formation after focal-cortical application of 4-aminopyridine (4-AP) in the rat. Brain Res. 2008 Sep;1228:217-28. doi: http://dx.doi.org/10.1016/j.brainres.2008.06.044
13. Chan PH. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res. 2004 Nov;29(11):1943-9.
14. Chen H, Sun D. The role of Na-K-Cl co-transporter in cerebral ischemia. Neurol Res. 2005 Apr;27(3):280-6. doi: http://dx.doi.org/10.1179/016164105X25243

Information about authors:
Bon L.I. – lecturer of the Chair of Pathological Physiology named after D.A. Maslakov, Grodno State Medical University;
Maksimovich N.Ye. – Doctor of Medical Sciences, professor, head of the Chair of Pathological Physiology named after D.A. Maslakov, Grodno State Medical University;
Zimatkin S. M. – Doctor of Biological Sciences, professor, head of the Chair of Histology, Cytology & Embryology, Grodno State Medical University.

Correspondence address: Republic of Belarus, 230009, Grodno, 80, Gorky str., Grodno State Medical University, Chair of Pathological Physiology named after D.A. Maslakov. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Lizaveta I. Bon.

Поиск по сайту