Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2018.3.7

Gorodetskaya I.V., Gusakova E.A.
The influence of iodine-containing thyroid hormones on the central part of the stress-limiting system
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus

Vestnik VGMU. 2018;17(3):7-15.

Abstract.
Due to the wide spread of thyroid gland diseases, on the one hand, and stress-induced pathology, on the other hand, the study of the mechanisms of antistress action of iodine-containing thyroid hormones is very important. It has been established that the change of the thyroid status affects the metabolism and the level of the components of the central (inhibitory neurotransmitters: gamma-aminobutyric acid, glycine, dopamine, serotonin, opioid peptides) link of the stress-limiting system that limits or neutralizes the influence of the stress-realizing system. The expressiveness of this effect has a tissue specificity, depends on the age and sex of the animals, as well as on the degree of the thyroid gland dysfunction. A new scientific knowledge about the activation of the central link of the stress-limiting system with iodine-containing thyroid hormones opens the possibility of developing a new means to increase the body’s resistance to stressors at the expense of the effect on its thyroid status.
Key words: iodine-containing thyroid hormones, central stress-limiting system.

References

1. Sukhorukova TA; In-t fiziologii akad. nauk BSSR. Cardial effect of thyroid hormones at an immobilized stress: avtoref dis … kand med nauk: 14.00.17. Minsk, RB; 1990. 26 р. (In Russ.)
2. Bozhko AP, Solodkov AP, Sukhorukova TA, Gorodetskaya IV. To the mechanism of antistressorny cardial effect of thyroid hormones. V: Fiziologicheskie i biokhimicheskie aspekty patologicheskikh protsessov: sb nauch tr. Vitebsk, RB: VGMI; 1990. Р. 100-4. (In Russ.)
3. Bozhko AP, Gorodetskaya IV. The importance of thyroid hormones in preventing violations of contractile function and antioxidant activity of the myocardium under heat stress. Ros Fiziol Zhurn im IM Sechenova. 1998;84(3):226-32. (In Russ.)
4. Malyshev IYu, Golubeva LYu, Bozhko AP, Gorodetskaya IV. Role local a stress - the limiting systems of a myocardium in tire-tread cardial effect of small doses of thyroid hormones at an immobilized stress at rats. Ros Fiziol Zhurn im IM Sechenova. 2000;86(1):62-7. (In Russ.)
5. Kryzhanovskiy GN. Bases of the general pathophysiology. Moscow, RF: Med inform agentstvo; 2011. 253 р.
6. Petroff OA. GABA and glutamate in the human brain. Neuroscientist. 2002;8(6):562-73. doi: http://dx.doi.org/10.1177/1073858402238515  
7. Farrant M, Kaila K. The cellular molecular and ionic basis of GABAA receptor signaling. Prog Brain Res. 2007;160:59-87.
8. Sem'yanov AV. GAMK-ergichesky inhibition in a CNS: types of GAMK-receptors and mechanisms tonic GAMK-oposredovannogo brake action. Neirofiziologiia. 2002;34(1):82-92. (In Russ.)
9. Chebib M. Gabac receptor ion channels. Clin Exp Pharmacol Physiol. 2004 Nov;31(11):800-4. doi: http://dx.doi.org/10.1111/j.1440-1681.2004.04083.x
10. Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular structure and physiological functions of GABAB receptors. Physiol Rev. 2004 Jul;84(3):835-67. doi: http://dx.doi.org/10.1152/physrev.00036.2003
11. Scanziani M. GABA spillover activates postsynaptic GABAB receptors to control rhythmic hippocampal activity. Neuron. 2000 Mar;25(3):673-81.
12. Johnston GA. GABAc receptors: relatively simple transmitter-gated ion channels? Trends Pharmacol Sci. 1996 Sep;17(9):319-23. doi: http://dx.doi.org/10.1016/0165-6147(96)10038-9
13. Shul'govskiy VV. Fundamentals of neurophysiology: ucheb posobie dlia studentov vuzov, obuchaiushchikhsia po napravleniiu «Psikhologiia» i «Biologiia». Moscow: Aspekt Press; 2000. 277 р. (In Russ.)
14. Shirinova FA; In-t fiziologii im AI Karaeva. System gamma аминомаслянной acids (GAMK) in structures of a brain at change of function of a thyroid gland and influence of steams of benzene: avtoref dis … kand biol nauk: 03.00.13, 14.00.16. Baku, Azerbaijan; 1984. 26 р. (In Russ.)
15. Inoyatova FKh, Tonkikh AK, Yakubova DT. GAMK-retseptornye the systems of a brain at dysfunction of a thyroid gland. Problemy endokrinologii. 2009;55(5):28-30. (In Russ.)
16. Orudzheva AM. Influence of a thyroxine on GAMK metabolism in a brain of rats. Estestven Tekhn Nauki. 2011;56(6):154-7. (In Russ.)
17. Demchenko OM. The psychoemotional status of rats in the conditions of dysfunction of a thyroid gland. Teoret Meditsina. 2014;19(1):10-5. (In Ukr.)
18. Chapa F, Künnecke B, Calvo R, Escobar del Rey F, Morreale de Escobar G, Cerdán S. Adult-onset hypothyroidism and the cerebral metabolism of (1,2-13C2) acetate as detected by 13C nuclear magnetic resonance. Endocrinology. 1995 Jan;136(1):296-305. doi: http://dx.doi.org/10.1210/endo.136.1.7828544
19. Amakhin D V, Veselkin NP. Interaction of effects of neurotransmitters of glycine and GAMK in the central nervous system. Tsitologiia. 2012;54(6):469-77. (In Russ.)
20. Danglot L, Rostaing P, Triller A, Bessis A. Morphologically identified glycinergic synapses in the hippocampus. Mol Cell Neurosci. 2004 Dec;27(4):394-403. doi: http://dx.doi.org/10.1016/j.mcn.2004.05.007
21. Waldvogel HJ, Baer K, Allen KL, Rees MI, Faull RL. Glycine receptors in the striatum, globus pallidus, and substant ia nigra of the human brain: an immunohistochemical study. J Comp Neurol. 2007 Jun;502(6):1012-29. doi: http://dx.doi.org/10.1002/cne.21349
22. Baer K, Waldvogel HJ, Faull RL, Rees MI. Localization of glycine receptors in the human forebrain, brainstem, and cervical spinal cord: an immunohistochemical review. Front Mol Neurosci. 2009 Nov;2:25. doi: http://dx.doi.org/10.3389/neuro.02.025.2009
23. Uusisaari M, Knopfel T. GlyT2+ neurons in the lateral cerebellar nucleus. Cerebellum. 2010 Mar;9(1):42-55. doi: http://dx.doi.org/10.1007/s12311-009-0137-1
24. Dutertre S, Becker C, Betz H. Inhibitory glycine receptors: an update / S. Dutertre. J Biol Chem. 2012 Nov;287(48):40216-23. doi: http://dx.doi.org/10.1074/jbc.R112.408229
25. Turecek R, Trussell LO. Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature. 2001 May;411(6837):587-90. doi: http://dx.doi.org/10.1038/35079084
26. Gusev EI, Skvortsova VI. Brain ischemia. Moscow, RF: Meditsina; 2001. 328 р. (In Russ.)
27. Maier W, Schemm R, Grewer C, Laube B. Disruption of interdomain interactions in the glutamate binding pocket affects differentially agonist affinity and efficacy of N-methyl-D-aspartate receptor activation. J Biol Chem. 2007 Jan;282(3):1863-72. doi: http://dx.doi.org/10.1074/jbc.M608156200
28. Yamamoto K, Koyanagi Y, Koshikawa N, Kobayashi M. Postsynaptic cell type-dependent cholinergic regulation of gabaergic synaptic transmission in rat insular cortex. J Neurophysiol. 2010 Oct;104(4):1933-45. doi: http://dx.doi.org/10.1152/jn.00438.2010
29. Ashmarin IP, Antipenko AE, Ashapkin VV, Vol'skiy GG, Dambinova SA, Eshchenko ND, i dr; Ashmarin IP, Stukalov PV, red. Neurochemistry. Moscow, RF: Izd-vo In-ta biomed himii RAMN; 1996. 470 р. (In Russ.)
30. Dopico JG, González-Hernández T, Pérez IM, García IG, Abril AM, Inchausti JO, et al. Glycine release in the substantia nigra: interaction with glutamate and GABA. Neuropharmacology. 2006 Apr;50(5):548-57. doi: http://dx.doi.org/10.1016/j.neuropharm.2005.10.014
31. Sakata Y, Owada Y, Sato K, Kojima K, Hisanaga K, Shinka T, et al. Structure and Expression of the Glycine Cleavage System in Rat Central Nervous System. Brain Res Mol Brain Res. 2001 Oct;94(1-2):119-30.
32. Russier M, Kopysova IL, Ankri N, Ferrand N, Debanne D. GABA and glycine co-release optimizes functional inhibition in rat brainstem motoneurons in vitro. J Physiol. 2002 May;541(Pt 1): 123–137. doi: http://dx.doi.org/10.1113/jphysiol.2001.016063
33. Howard A, Tahir I, Javed S, Waring SM, Ford D, Hirst BH. Glycine transporter GLYT1 is essential for glycine-mediated protection of human intestinal epithelial cells against oxidative damage. J Physiol. 2010 Mar;588(Pt 6):995-1009. doi: http://dx.doi.org/10.1113/jphysiol.2009.186262
34. Aoyama K, Watabe M, Nakaki T. Regulation of neuronal glutathione synthesis. J Pharmacol Sci. 2008 Nov;108(3):227-38.
35. Li Y, Krupa B, Kang JS, Bolshakov VY, Liu G. Glycine Site of NMDA receptor serves as a spatiotemporal detector of synaptic activity patterns. J Neurophysiol. 2009 Jul;102(1):578-89. doi: http://dx.doi.org/10.1152/jn.91342.2008
36. Waxman EA, Baconguis I, Lynch DR, Robinson MB. N-Methyl-D-aspartate receptor-dependent regulation of the glutamate transporter excitatory amino acid carrier. J Biol Chem. 2007 Jun5;282(24):17594-607. doi: http://dx.doi.org/10.1074/jbc.M702278200
37. Dieterich DC, Hodas JJL, Gouzer G, Shadrin IY, Ngo JT, Triller A, et al. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci. 2010 Jul;13(7):897-905. doi: http://dx.doi.org/10.1038/nn.2580
38. Veselkin NP, Adanina VO, Rio JP, Repérant J. Colocalization of neurotransmitters in presynaptic boutons of inhibitory synapses in the lamprey spinal cord. Neurosci Behav Physiol. 2000 Sep-Oct;30(5):547-52.
39. Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev. 2002 Apr;82(2):503-68. doi: http://dx.doi.org/10.1152/physrev.00029.2001
40. Glinnik SV, Rineyskaya ON, Romanovskiy IV, Krasnenkova TP. Content of free amino acids in a brain and a blood plasma of rats with an experimental hypothyrosis at a thermal stress. Med Zhurn. 2007;(3):47-9. (In Russ.)
41. Raevskiy KS, Sotnikova TD, Gaynetdinov RR. Dofaminergichesky systems of a brain: receptor heterogeneity, functional role, pharmacological regulation. Uspehi Fiziol Nauk. 1996;27(4):3-29. (In Russ.)
42. Kolotinova OI, Korenyuk II, Khusainov DR, Cheretaev IV. Dofaminergichesky system of a brain. Vestn BrGU. 2014;(4):97-106. (In Russ.)
43. Ben-Jonathan N, HnaskoR. Dopamine as a prolactin (PRL) inhibitor / N. Ben-Jonathan. Endocr Rev. 2001 Dec;22(6):724-63. doi: http://dx.doi.org/10.1210/edrv.22.6.0451
44. Jin J, Hashizume T. Effects of hypothalamic dopamine on growth hormone-releasing hormone-induced growth hormone secretion and thyrotropin-releasing hormone-induced prolactin secretion in goats. Anim Sci J. 2015 Jun;86(6):634-40. doi: http://dx.doi.org/10.1111/asj.12333
45. Kobusiak-Prokopowicz M, Sciborski K, Mysiak A. Effect of intravenous dopamine infusion on pituitary and thyroid function and on nephroprotection / M. Kobusiak-Prokopowicz. Pol Arch Med Wewn. 2012;122(3):82-8.
46. Rastogi RB, Singhal RL.  Influence of neonatal and adult hyperthyroidism on behavior and biosynthetic capacity for norepinephrine, dopamine and 5-hydroxytryptamine in rat brain. J Pharmacol Exp Ther. 1976 Sep;198(3):609-18.
47. Ito JM, Valcana T, Timiras PS. Effect of hypo- and hyperthyroidism on regional monoamine metabolism in the adult rat brain. Neuroendocrinology. 1977;24(1):55-64.
48. Gorenko IN. Dependence of levels of thyroid hormones on concentration of Dofaminum in a blood at men of Arkhangelsk and the village Nes (Nenets Autonomous Okrug). Vestn Ural Med Akad Nauki. 2014;(2):122-4. (In Russ.)
49. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999 Aug;38(8):1083-152.
50. Naumenko VS; Nauch.-issled. in-t fiziologii SO RAMN. Serotoninovy receptors and functional interreceptor interactions in plasticity of serotoninovy system of a brain, a thermoregulation and regulation of behavior: avtoref dis … kand biol nauk: 03.03.01. Novosibirsk, RF; 2012. 25 р. (In Russ.)
51. Kageyama K, Tozawa F, Horiba N, Watanobe H, Suda T. Serotonin stimulates corticotropin-releasing factor gene expression in the hypothalamic paraventricular nucleus of conscious rats. Neurosci Lett. 1998 Feb;243(1-3):17-20.
52. Calogero AE, Bagdy G, Moncada ML, D'Agata R. Effect of selective serotonin agonists on basal, corticotrophin-releasing hormone- and vasopressin-induced ACTH release in vitro from rat pituitary cells. J Endocrinol. 1993 Mar;136(3):381-7.
53. Henley WN, Chen X, Klettner C, Bellush LL, Notestine MA. Hypothyroidism increases serotonin turnover and sympathetic activity in the adult rat. Can J Physiol Pharmacol. 1991 Feb;69(2):205-10.
54. Masalova OO. Influence of an experimental hypothyrosis on a metabolism of biogenic amines in structures of a brain of rats of various age. Psihofarmakologija Biol Narkologija. 2008;8(1-2-2):2370-1. (In Russ.)
55. Wiens SC, Trudeau VL. Thyroid hormone and gamma-aminobutyric acid (GABA) interactions in neuroendocrine systems. Comp Biochem Physiol A Mol Integr Physiol. 2006 Jul;144(3):332-44. doi: http://dx.doi.org/10.1016/j.cbpa.2006.01.033
56. Somogyi J, Llewellyn-Smith IJ. Patterns of colocalization of GABA, glutamate and glycine immunoreactivities in terminals that synapse on dendrites of noradrenergic neurons in rat locus coeruleus. Eur J Neurosci. 2001 Jul;14(2):219-28.
57. Barreiro-Iglesias A, Villar-Cerviño V, Anadón R, Rodicio MC. Dopamine and gamma-aminobutyric acid are localized in restricted groups of neurons in the sea lamprey brain: insights into the early evolution of neurotransmitter localization in vertebrates. J Anat. 2009 Dec;215(6):601-10. doi: http://dx.doi.org/10.1111/j.1469-7580.2009.01159.x
58. Zhou FM, Liang Y, Salas R, Zhang L, De Biasi M, Dani JA. Corelease of dopamine and serotonin from striatal dopamine terminals. Neuron. 2005 Apr;46(1):65-74. doi: http://dx.doi.org/10.1016/j.neuron.2005.02.010
59. Smirnov VM, Sveshnikov DS, Yakovlev VN, Pravdivtsev VA. Physiology of the central nervous system: ucheb posobie dlja studentov vyssh ucheb zavedenij. 6-e izd ster. Moscow, RF: Akademija; 2008. 368 р. (In Russ.)
60. Tanaka M, Ida Y, Tsuda A, Nagasaki N. Involvement of brain noradrenaline and opioid peptides in emotional changes induced by stress in rats. Ann NY Acad Sci. 1990;597:159-74.
61. Belyaeva YuA; MGU im. M. V. Lomonosova. Influence of opioid peptides of an alimentary parentage on behavior of cubs of white rats: avtoref dis … kand biol nauk: 03.00.13. Moscow, RF; 2008. 25 р. (In Russ.)
62. Drolet G, Dumont EC, Gosselin I, Kinkead R, Laforest S, Trottier JF. Role of endogenous opioid system in the regulation of the stress response. Prog Neuropsychopharmacol Biol Psychiatry. 2001 May;25(4):729-41.
63. Lesniak A, Lipkowski AW. Opioid peptides in peripheral pain control. Acta Neurobiol Exp (Wars). 2011;71(1):129-38.
64. Yeomans MR, Gray RW. Opioid peptides and the control of human ingestive behavior. Neurosci Biobehav Rev. 2002 Oct;26(6):713-28.
65. Cheng MC, Smith AI, Funder JW. Beta-endorphin and its congeners in rat pituitary and thyroid: effects of propylthiouracil and thyroid hormone administration. Endocrinology. 1986 Aug;119(2):642-7. doi: http://dx.doi.org/10.1210/endo-119-2-642
66. Tang F, Man SY. Hypothyroidism and Pituitary Contents of Immunoactive Met-enkephalin and β-Endorphin in Male Rats of Different Ages. Proc Soc Exp Biol Med. 1988 May;188(1):82-6.

Information about authors:
Gorodetskaya I.V. – Doctor of Medical Sciences, professor of the Chair of Normal Physiology, dean of the Medical Faculty, Vitebsk State Order of Peoples’ Friendship Medical University;
Gusakova E.A. – Candidate of Biological Sciences, associate professor of the Chair of General, Physical and Colloid Chemistry, Vitebsk State Order of Peoples’ Friendship Medical University.

Correspondence address: Republic of Belarus, 210023, Vitebsk, 27 Frunze ave., Vitebsk State Order of Peoples’ Friendship Medical University, Chair of Normal Physiology. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Irina V. Gorodetskaya.

Поиск по сайту