Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2018.4.22

Bon L.I., Maksimovich N.Ye.
Methods of neurological disorders estimation in an experiment
Grodno State Medical University, Grodno, Republic of Belarus

Vestnik VGMU. 2018;17(4):22-28.

Abstract.
Introduction. The rat is an important object of experimental studies, including those that investigate the cerebral cortex in the norm and in different pathologies. The study of the pathology of the brain in the experiment necessitates adequate methods of assessing the neurological deficit that occurs in animals, including sensorimotor and behavioral disorders, as well as disorders of higher nervous activity.
Objectives. To summarize literature data on possible ways of assessing sensory-motor reflexes, learning and memory in experimental animals at different ages.
Conclusions. There is a wide range of methods for evaluating neurological disorders in laboratory animals, which allows us to study the level of neurological deficits development in various pathologies of the nervous system, cerebral ischemia included, as well as to study the disorders of brain maturation in postnatal ontogenesis on modelling embryo- and fetopathy and testing methods for their correction.
Key words: brain, neurological deficit, rats.

References

1. Buresh Ya, Kh’yuston DP. Methods and basic experiments in the study of brain and behavior. Moscow, RF: Vyssh shk; 1991. 400 р. (In Russ.)
2. Tilson HA, Mitchell CL. Neurobehavioral techniques to assess the effects of chemicals on the nervous system. Annu Rev Pharmacol Toxicol. 1984;24:425-50. doi: http://dx.doi.org/10.1146/annurev.pa.24.040184.002233
3. Vorhees CV. Methods for detecting long-term CNS dysfunction after prenatal exposure to neurotoxins. Drug Chem Toxicol. 1997;20(4):387-99. doi.org/10.3109/01480549709003895
4. Sestakova N, Puzserova A, Kluknavsky M, Bernatova I. Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdiscip Toxicol. 2013 Sep;6(3):126-35. doi: http://dx.doi.org/10.2478/intox-2013-0020
5. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion Evaluation of the model and development of a neurological examination. Stroke. 1986 May-Jun;17(3):472-6.
6. Prickaerts J, Fahrig T, Blokland A. Cognitive performance and biochemical markers in septum hippocampus and striatum of rats after an i.c.v. injection of streptozotocin: a correlation analysis. Behav Brain Res. 1999 Jul;102(1-2):73-88.
7. Schaar KL, Brenneman MM, Savitz SI. Functional assessments in the rodent stroke model. Exp Transl Stroke Med. 2010 Jul;2(1):13. doi: http://dx.doi.org/10.1186/2040-7378-2-13
8. Schallert T, Woodlee MT. Orienting and placing. In: Whishaw IQ, Kolb B. The Behavior of the Laboratory Rat: A Handbook with Tests. Oxford: Oxford University Press; 2004. P. 129-40. doi: http://dx.doi.org/10.1093/acprof:oso/9780195162851.003.0012
9. Dayneko AS, Shmonin AA, Shumeeva AV, Kovalenko EA, Mel’nikova EV, Vlasov TD. Methods of evaluation of neurological deficit in rats after 30-minute focal brain ischemia in the early and late post-ischemic period. Regionar Krovoobrashchenie Mikrotsirkuliatsiia. 2014;13(1):68-78. (In Russ.)
10. Hall CS. Emotional behavior in the rat. III. The relationship between emotionality and ambulatory activity. J Comp Psychol. 1936;22(3):345-52. doi: http://dx.doi.org/10.1037/h0059253
11. Hattori K, Lee H, Hurn PD, Crain BJ, Traystman RJ, DeVries AC. Cognitive deficits after focal cerebral ischemia in mice. Stroke. 2000 Aug;31(8):1939-44.
12. Satrom KM, Ennis K, Sweis BM, Matveeva TM, Chen J, Hanson L, et al. Neonatal hyperglycemia induces CXCL10/CXCR3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats. J Neuroinflammation. 2018 Mar;15(1):82. doi: http://dx.doi.org/10.1186/s12974-018-1121-9
13. Rosińczuk J, Dymarek R, Całkosiński I.The protective action of tocopherol and acetylsalicylic acid on the behavior of rats treated with dioxins. Adv Clin Exp Med. 2018 Jan;27(1):5-14. doi: http://dx.doi.org/10.17219/acem/67314
14. Zakharov VV, Yakhno NN. Cognitive disorders in the elderly and old age. Moscow, РФ; 2005. 71 р. (In Russ.)
15. Cinque S, Zoratto F, Poleggi A, Leo D, Cerniglia L, Cimino S, et al. Behavioral Phenotyping of Dopamine Transporter Knockout Rats: Compulsive Traits, Motor Stereotypies, and Anhedonia. Front Psychiatry. 2018 Feb;9:43. doi: http://dx.doi.org/10.3389/fpsyt.2018.00043
16. Zorina ZA, Poletaeva II. Zoopsychology. Elementary thinking of animals: ucheb posobie. Moscow, RF: Aspekt Press; 2001. 320 р. (In Russ.)
17. Schallert T, Upchurch M, Lobaugh N, Farrar SB, Spirduso WW, Gilliam P, et al. Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol Biochem Behav. 1982 Mar;16(3):455-62.
18. Ehman KD, Moser VC. Evaluation of cognitive function in weanling rats: a review of methods suitable for chemical screening. Neurotoxicol Teratol. 2006 Jan-Feb;28(1):144-61. doi: http://dx.doi.org/10.1016/j.ntt.2005.12.002
19. Fashing PJ, Nguyen N. Behavior toward the dying, diseased, or disabled among animals and its relevance to paleopathology. Int J Paleopathol. 2011 Dec;1(3-4):128-129. doi: http://dx.doi.org/10.1016/j.ijpp.2012.02.004
20. Bidaran S, Ahmadi AR, Yaghmaei P, Sanati MH, Ebrahim-Habibi A. Astaxanthin effectiveness in preventing multiple sclerosis in animal model. Bratisl Lek Listy. 2018;119(3):160-166. doi: http://dx.doi.org/10.4149/BLL_2018_031
21. Bod’ová K, Mitchell GJ, Harpaz R, Schneidman E, Tkačik G. Probabilistic models of individual and collective animal behavior. PLoS One. 2018 Mar;13(3):e0193049. doi: http://dx.doi.org/10.1371/journal.pone.0193049
22. Chouinard-Thuly L, Gierszewski S, Rosenthal GG, Reader SM, Rieucau G, Woo KL, et al. Technical and conceptual considerations for using animated stimuli in studies of animal behavior. Curr Zool. 2017 Feb;63(1):5-19. doi: http://dx.doi.org/10.1093/cz/zow104
23. Sandini TM, Reis-Silva TM, Moreira N, Bernardi MM, Lebrun I, Spinosa HS. Effects of isoflavones on behavior, estradiol, glutamate, and GABA levels in intact middle-aged female rats. Nutr Neurosci. 2018 Mar;21:1-12. doi: http://dx.doi.org/10.1080/1028415X.2018.1447296
24. Kondashevskaya MV. Experimental Evaluation of the Effects of Low-Dose Heparin on the Behavior and Morphofunctional Status of the Liver in Wistar Rats with Posttraumatic Stress Disorders. Bull Exp Biol Med. 2018 Mar;164(4):488-492. doi: http://dx.doi.org/10.1007/s10517-018-4018-9
25. Amstislavskiy SYa, Ragaeva DS, Brusentsev EYu, Igonina TN. Embryos and hypertension. Priroda. 2015;(3):30-40. (In Russ.)

Information about authors:
Bon L.I. – lecturer of the Chair of Pathological Physiology named after D.A. Maslakov, Grodno State Medical University;
Maksimovich N.Ye. – Doctor of Medical Sciences, professor, head of the Chair of Pathological Physiology named after D.A. Maslakov, Grodno State Medical University.

Correspondence address: Republic of Belarus, 230009, Grodno, 80, Gorky str., Grodno State Medical University, Chair of Pathological Physiology named after D.A. Maslakov. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Lizaveta I. Bon.

Поиск по сайту