A+ A A-

Download article


Sobolevskaya I.S., Myadelets O.D., Semenov V.M., Zykova O.S., Sobolevskiу S.L., Pashinskaya E.S.
Structural and functional features of some genes involved in lipid metabolism and transport
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus

Vestnik VGMU. 2018;17(5):17-27.

The study of the genetic aspects of the regulation of lipid metabolism at the present time acquires special significance. To develop a complete differentiated approach in assessing the initiation and progression of metabolic processes disorders, it is necessary to use molecular-genetic markers that allow to make a more accurate diagnosis and also to control the efficacy of the provided treatment. In this respect, the study of genes involved in the metabolism of lipids, combined with biochemical and structural-functional data, will enable the determination of risk of fat metabolism disturbances development in the skin, and will form the basis of predictive medicine and help to implement differential preventive approaches, carry out targeted diagnosing, prevention and treatment of pathologies, taking into account individual peculiarities.The purpose of this article was to generalize and systematize the materials of studying the genetic aspects of lipid metabolism regulation at the present stage for their further use in the original study.
Key words: gene, expression, protein, cell, lipid metabolism, human being.


1. Kurashvili LV, Vasil'kov VG. Lipid metabolism in case of emergency. Penza, RF; 2003. 198 р. (In Russ.)
2. Tertov VV, Sobenin IA, Lazareva VL. Interaction of multiple-modification (desialated) LDL isolated from the blood of atherosclerosis patients with cell receptors. Biul Eksperim Biologii Meditsiny. 1994;117(1):53-5. (In Russ.)
3. Sentsova TB, Kirillova OO, Tutel'yan VA, Vorozhko IV, Revyakina VA, Gapparova KM. Genetic markers of metabolism in evaluation of cytokine status in obese patients. Immunologiia. 2014;35(5):241-4. (In Russ.)
4. Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov. 2008 Jun;7(6):489-503. doi:
5. Hotamisligil GS, Bernlohr DA. Metabolic functions of FABPs-mechanisms and therapeutic implications. Nat Rev Endocrinol. 2015 Oct;11(10):592-605. doi:
6. Hunt CR, Ro JH, Dobson DE, Min HY, Spiegelman BM. Adipocyte P2 gene: вevelopmental expression and homology of 5'-flanking sequences among fat cell-specific genes. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3786-90.
7. Smathers RL, Petersen DR. The human fatty acid-binding protein family: Evolutionary divergences and functions. Hum Genomics. 2011 Mar;5(3):170-91.
8. Glatz JF, van der Vusse GJ. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res. 1996 Sep;35(3):243-82.
9. Sweetser DA, Birkenmeier EH, Klisak IJ, Zollman S, Sparkes RS, Mohandas T, et al. The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkage relationships. J Biol Chem. 1987 Nov;262(33):16060-71.
10. Chmurzynska A. The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J Appl Genet. 2006;47(1):39-48. doi:
11. Marcelino AM, Smock RG, Gierasch LM. Evolutionary coupling of structural and functional sequence information in the intracellular lipid-binding protein family. Proteins. 2006 May;63(2):373-84. doi:
12. Schachtrup C, Emmler T, Bleck B, Sandqvist A, Spener F. Functional analysis of peroxisome-proliferator-responsive element motifs in genes of fatty acid-binding proteins. Biochem J. 2004 Aug;382(Pt 1):239-45. doi:
13. Tan NS, Shaw NS, Vinckenbosch N, Liu P, Yasmin R, Desvergne B, et al. Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol. 2002 Jul;22(14):5114-27.
14. Atshaves BP, Martin GG, Hostetler HA, McIntosh AL, Kier AB, Schroeder F. Liver fatty acid-binding protein and obesity. J Nutr Biochem. 2010 Nov;21(11):1015-32. doi:
15. Shi J, Zhang Y, Gu W, Cui B, Xu M, Yan Q, et al. Serum liver fatty acid binding protein levels correlate positively with obesity and insulin resistance in Chinese young adults. PLoS One. 2012;7(11):e48777. doi:
16. Krusinová E, Pelikánová T. Fatty acid binding proteins in adipose tissue: a promising link between metabolic syndrome and atherosclerosis? Diabetes Res Clin Pract. 2008 Dec;82 Suppl 2:S127-34. doi:
17. Furuhashi M, Saitoh S, Shimamoto K, Miura T. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin Med Insights Cardiol. 2015 Feb;8(Suppl 3):23-33. doi:
18. Xu A, Wang Y, Xu JY, Stejskal D, Tam S, Zhang J, et al. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem. 2006 Mar;52(3):405-13. doi:
19. Schachtrup C, Emmler T, Bleck B, Sandqvist A, Spener F. Functional analysis of peroxisome-proliferator-responsive element motifs in genes of fatty acid-binding proteins. Biochem J. 2004 Aug;382(Pt 1):239-45. doi:
20. Haunerland NH, Spener F. Fatty acid-binding proteins – insights from genetic manipulations. Prog Lipid Res. 2004 Jul;43(4):328-49. doi:
21. Wamique M, Ali W. CETP Gene and Its Role in Diabetes Mellitus Type II - A Review. J Community Med Health. 2016;6:425. doi:
22. Le Goff W, Guerin M, Chapman MJ. Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia. Pharmacol Ther. 2004 Jan;101(1):17-38.
23. Chang CK, Snook JT. The cholesterolaemic effects of dietary fats in cholesteryl ester transfer protein transgenic mice. Br J Nutr. 2001 Jun;85(6):643-8.
24. Son YS, Zilversmit DB. Increased lipid transfer activities in hyperlipidemic rabbit plasma. Arteriosclerosis. 1986 May-Jun;6(3):345-51.
25. Eapen DJ, Kalra GL, Rifai L, Eapen CA, Merchant N, Khan BV. Raising HDL cholesterol in women. Int J Womens Health. 2010 Aug;1:181-91.
26. Moulin P, Appel GB, Ginsberg HN, Tall AR. Increased concentration of plasma cholesteryl ester transfer protein in nephrotic syndrome: role in dyslipidemia. J Lipid Res. 1992 Dec;33(12):1817-22.
27. Oliveira HC, de Faria EC. Cholesteryl ester transfer protein: the controversial relation to atherosclerosis and emerging new biological roles. IUBMB Life. 2011 Apr;63(4):248-57. doi:
28. Isse N, Ogawa Y, Tamura N, Masuzaki H, Mori K, Okazaki T, et al. Structural organization and chromosomal assignment of the human obese gene. J Biol Chem. 1995 Nov;270(46):27728-33.
29. Karvonen MK, Pesonen U, Heinonen P, Laakso M, Rissanen A, Naukkarinen H, et al. Identification of new sequence variants in the leptin gene. J Clin Endocrinol Metab. 1998 Sep;83(9):3239-42. doi:
30. Pan H, Guo J, Su Z. Advances in understanding the interrelations between leptin resistance and obesity. Physiol Behav. 2014 May;130:157-69. doi:
31. Kovarenko MA, Ruyatkina LA, Petrishcheva MS, Bodaveli OV. Leptin: physiological and pathological aspects of action. Vestn NGU Ser Biologiia Klin Meditsina. 2003;1(vyp 1):59-74. (In Russ.)
32. Kiess W, Reich A, Müller G, Meyer K, Galler A, Bennek J, et al. Clinical aspects of obesity in childhood and adolescence – diagnosis, treatment and prevention. Int J Obes Relat Metab Disord. 2001 May;25 Suppl 1:S75-9.
33. El-Zein O, Kreydiyyeh SI. Leptin inhibits glucose intestinal absorption via PKC, p38MAPK, PI3K and MEK/ERK. PLoS One. 2013 Dec;8(12):e83360. doi:
34. Marroquí L, Gonzalez A, Ñeco P, Caballero-Garrido E, Vieira E, Ripoll C, et al. Role of leptin in the pancreatic β-cell: effects and signaling pathways. J Mol Endocrinol. 2012 May;49(1):R9-17. doi:
35. Copinschi G, Leproult R, Spiegel K. The important role of sleep in metabolism. Front Horm Res. 2014;42:59-72. doi:
36. Knutson KL, Spiegel K, Penev P, Van Cauter E. The metabolic consequences of sleep deprivation. Sleep Med Rev. 2007 Jun;11(3):163-78. doi:
37. de Salles BF, Simão R, Fleck SJ, Dias I, Kraemer-Aguiar LG, Bouskela E. Effects of resistance training on cytokines. Int J Sports Med. 2010 Jul;31(7):441-50. doi:
38. Otsuka R, Yatsuya H, Tamakoshi K, Matsushita K, Wada K, Toyoshima H. Perceived psychological stress and serum leptin concentrations in Japanese men. Obesity (Silver Spring). 2006 Oct;14(10):1832-8.
39. Merkel M, Eckel RH, Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res. 2002 Dec;43(12):1997-2006.
40. Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab. 2009 Aug;297(2):E271-88. doi:
41. Deeb SS, Peng RL. Structure of the human lipoprotein lipase gene. Biochemistry. 1989 May;28(10):4131-5.
42. Murthy V, Julien P, Gagne C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol Ther. 1996;70(2):101-35.
43. Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res. 1996 Apr;37(4):693-707.
44. Nikolaev IV, Mulyukova RV, Kayumova LR, Vorob'yeva EV, Gorbunova VYu. The analysis of the interaction of alleles of genes of lipid metabolism in dyslipidemia. Vavilov Zhurn Genetiki Selektsii. 2014;18(4-2):856-66. (In Russ.)
45. Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med (Berl). 2002 Dec;80(12):753-69. doi:
46. Kim SY, Park SM, Lee ST. Apolipoprotein C-II is a novel substrate for matrix metalloproteinases. Biochem Biophys Res Commun. 2006 Jan;339(1):47-54. doi:
47. Delezie J, Dumont S, Dardente H, Oudart H, Gréchez-Cassiau A, Klosen P, et al. The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 2012 Aug;26(8):3321-35. doi:
48. Unal R, Pokrovskaya I, Tripathi P, Monia BP, Kern PA, Ranganathan G. Translational regulation of lipoprotein lipase in adipocytes: depletion of cellular protein kinase Cα activates binding of the C subunit of protein kinase A to the 3′-untranslated region of the lipoprotein lipase mRNA. Biochem J. 2008 Jul;413(2):315-22. doi:
49. Oscarsson J, Ottosson M, Vikman-Adolfsson K, Frick F, Enerbäck S, Lithell H, et al. GH but not IGF-I or insulin increases lipoprotein lipase activity in muscle tissues of hypophysectomised rats. J Endocrinol. 1999 Feb;160(2):247-55.

Information about authors:
Sobolevskaya I.S. – Candidate of Biological Sciences, associate professor, doctoral candidate of the Chair of Histology, Cytology & Embryology, Vitebsk State Order of Peoples’ Friendship Medical University;
Myadelets O.D. – Doctor of Medical Sciences, professor, head of the Chair of Histology, Cytology & Embryology, Vitebsk State Order of Peoples’ Friendship Medical University;
Semenov V.M. – Doctor of Medical Sciences, professor, head of the Chair of Infectious Diseases, Vitebsk State Order of Peoples’ Friendship Medical University;
Zykova O.S. – Candidate of Medical Sciences, associate professor of the Chair of Dermatovenerology, Vitebsk State Order of Peoples’ Friendship Medical University;
Sobolevskiу S.L. – lecturer of the Chair of Hospital Surgery with the course of Urology and Pediatric Surgery, Vitebsk State Order of Peoples’ Friendship Medical University;
Pashinskaya E.S. – Candidate of Biological Sciences, associate professor, doctoral candidate of the Chair of Infectious Diseases, Vitebsk State Order of Peoples’ Friendship Medical University.

Correspondence address: Republic of Belarus, 210009, Vitebsk, 27 Frunze ave., Vitebsk State Order of Peoples’ Friendship Medical University, Chair of Histology, Cytology & Embryology. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Irina S. Sobolevskaya.

Поиск по сайту