A+ A A-

Download article


Karpuk N.A.
The role and mechanisms of the oral tolerance in the development of allergic diseases of the oral cavity mucosa
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus

Vestnik VGMU. 2019;18(2):28-36.

Dental materials being in the oral cavity are constantly subjected to biodegradation and interaction with local microbiota and together with the oral fluid enter the gastrointestinal tract on swallowing. The intestinal immune system can distinguish harmless antigens and commensal bacteria from pathogenic microorganisms, which leads to the tolerance and protective immunity, accordingly. Intestinal commensal antigens are not simply ignored but rather initiate the active immunosuppression process, better known as oral tolerance, that prevents the immunopathology outcome.
Both the inner properties of intestinal microenvironment and participating cells as well as peripheral effects caused by the systemic spreading of peroral antigens contribute to the induction of regulatory mechanisms, that assure the intestinal homeostasis maintenance.
In this review article the mechanisms of natural immune tolerance to relatively harmless antigens and factors contributing to the oral tolerance disturbance and the development of allergic diseases of the oral cavity mucosa are considered.
Key words: oral cavity mucosa, allergy, oral tolerance, immune system.


1. Abul K, Lichtman AH. Basic immunology: functions and disorders of the immune system. Philadelphia, Pa: Saunders Elsevier; 2011. 312 p.
2. Berin MC, Mayer L. Can we produce true tolerance in patients with food allergy? J Allergy Clin Immunol. 2013 Jan;131(1):14-22. doi:
3. Cerovic V, Houston SA, Scott CL, Aumeunier A, Yrlid U, Mowat AM, Milling SW. Intestinal CD103- dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol. 2013 Jan;6(1):104-13. doi:
4. Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity. 2011 Feb;34(2):237-46. doi:
5. Oyoshi MK, Larson RP, Ziegler SF, Geha RS. Mechanical injury polarizes skin dendritic cells to elicit a T(H)2 response by inducing cutaneous thymic stromal lymphopoietin expression. J Allergy Clin Immunol. 2010 Nov;126(5):976-84. doi:
6. Marcondes Rezende M, Hassing I, Bol-Schoenmakers M, Bleumink R, Boon L, van Bilsen J, et al. CD4+ CD25+ T regulatory cells do not transfer oral tolerance to peanut allergens in a mouse model of peanut allergy. Clin Exp Allergy. 2011 Sep;41(9):1324-33. doi:
7. Hoyt AE, Medico T, Commins SP. Breast milk and food allergy: connections and current recommendations. Pediatr Clin North Am. 2015 Dec;62(6):1493-507. doi:
8. Kriegel MA, Rathinam C, Flavell RA. E3 ubiquitin ligase GRAIL controls primary T cell activation and oral tolerance. Proc Natl Acad Sci U S A. 2009 Sep;106(39):16770-5. doi:
9. Flinterman AE, Pasmans SG, den Hartog Jager CF, Hoekstra MO, Bruijnzeel-Koomen CA, Knol EF, et al. T cell responses to major peanut allergens in children with and without peanut allergy. Clin Exp Allergy. 2010 Apr;40(4):590-7. doi:
10. Shevach EM. CD4+ CD25+ supressor T cells: more questions than answers. Nat Rev Immunol. 2002 Jun;2(6):389-400. doi:
11. Hauet-Broere F, Unger WW, Garssen J, Hoijer MA, Kraal G, Samsom JN. Functional CD25– and CD25+ mucosal regulatory T cells are induced in gut-draining lymphoid tissue within 48 h after oral antigen application. Eur J Immunol. 2003 Oct;33(10):2801-10. doi:
12. Desvignes C, Etchart N, Kehren J, Akiba I, Nicolas JF, Kaiserlian D. Oral administration of hapten inhibits in vivo induction of specific cytotoxic CD8+ T cells mediating tissue inflammation: a role for regulatory CD4+ T cells. J Immunol. 2000 Mar;164(5):2515-22. doi:
13. Järvinen KM, Westfall J, De Jesus M, Mantis NJ, Carroll JA, Metzger DW, et al. Role of maternal dietary peanut exposure in development of food allergy and oral tolerance. PLoS One. 2015 Dec;10(12):e0143855. doi:
14. Gupta RS, Lau CH, Sita EE, Smith B, Greenhawt MJ. Factors associated with reported food allergy tolerance among US children. Ann Allergy Asthma Immunol. 2013 Sep;111(3):194-198. doi:
15. Sommanus S, Kerddonfak S, Kamchaisatian W, Vilaiyuk S, Sasisakulporn C, Teawsomboonkit W, et al. Cow's milk protein allergy: immunological response in children with cow's milk protein tolerance. Asian Pac J Allergy Immunol. 2014 Jun;32(2):171-7. doi:
16. Qamar N, Fishbone AB, Erickson KA, Cai M, Szychlinski C, Bryce PJ, et al. Naturally occurring tolerance acquisition to foods in previously allergic children is characterized by antigen specificity and associated with increased subsets of regulatory T cells. Clin Exp Allergy. 2015 Nov;45(11):1663-72. doi:
17. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, nonproliferat- ing CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med. 2000 Nov;192(9):1213-22.
18. Smit JJ, Bol-Schoenmakers M, Hassing I, Fiechter D, Boon L, Bleumink R, et al. The role of intestinal dendritic cells subsets in the establishment of food allergy. Clin Exp Allergy. 2011 Jun;41(6):890-8. doi:
19. Li W, Zhang Z, Saxon A, Zhang K. Prevention of oral food allergy sensitization via skin application of food allergen in a mouse model. Allergy. 2012 May;67(5):622-9. doi:
20. Eaton AD, Xu D, Garside P. Administration of exogenous interleukin-18 and interleukin-12 prevents the induction of oral tolerance. Immunology. 2003 Feb;108(2):196-203. doi:
21. Kitani A, Fuss IJ, Nakamura K, Schwartz OM, Usui T, Strober W. Treatment of experimental (trinitroenzene sulfonic acid) colitis by intranasal administration of transforming growth factor (TGF)-beta1 plasmid: TGF-beta1- mediated suppression of T helper cell type 1 response occurs by interleukin (IL)-10 induction and IL-12 receptor beta2 chain downregulation. J Exp Med. 2000 Jul 3;192(1):41-52.
22. Dioszeghy V, Mondoulet L, Puteaux E, Dhelft V, Ligouis M, Plaquet C, et al. Differences in phenotype, homing properties and suppressive activities of regulatory T cells induced by epicutaneous, oral or sublingual immunotherapy in mice sensitized to peanut. Cell Mol Immunol. 2017 Sep;14(9):770-782. doi:
23. Goudy KS, Burkhardt BR, Wasserfall C, Song S, Campbell-Thompson ML, Brusko T, et al. Systemic over-expression of IL-10 induces CD4+CD25+ cell populations in vivo and ameliorates type 1 diabetes in nonobese diabetic mice in a dose-dependent fashion. J Immunol. 2003 Sep;171(5):2270-8. doi:
24. Burbank AJ, Sood P, Vickery BP, Wood RA. Oral immunotherapy for food allergy. Immunol Allergy Clin North Am. 2016 Feb;36(1):55-69. doi:
25. Sakaguchi S. Control of immune responses by naturally arising CD4+ regulatory T cells that express toll-like receptors. J Exp Med. 2003 Feb;197(4):397-401. doi:
26. Rodriguez B, Prioult G, Hacini-Rachinel F, Moine D, Bruttin A, Ngom-Bru C, et al. Infant gut microbiota is protective against cow's milk allergy in mice despite immature ileal T-cell response. FEMS Microbiol Ecol. 2012 Jan;79(1):192-202. doi:
27. Rodriguez B, Prioult G, Bibiloni R, Nicolis I, Mercenier A, Butel MJ, et al. Germ-free status and altered caecal subdominant microbiota are associated with a high susceptibility to cow's milk allergy in mice. FEMS Microbiol Ecol. 2011 Apr;76(1):133-44. doi:
28. Noval Rivas M, Burton OT, Wise P, Zhang YQ, Hobson SA, Garcia Lloret M, et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J Allergy Clin Immunol. 2013 Jan;131(1):201-12. doi:
29. Di Costanzo M, Amoroso A, Canani RB. Gut microbiota as a target for food allergy. J Pediatr Gastroenterol Nutr. 2016 Jul;63 Suppl 1:S11-3. doi:
30. Christensen HR, Frokiaer H, Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol. 2002 Jan;168(1):171-8.
31. von der Weid T, Bulliard C, Schiffrin E. Induc- tion by a lactic acid bacterium of a population of CD4(+) T cells with low proliferative capacity that produce transforming growth factor beta and interleukin-10. Clin Diagn Lab Immunol. 2001 Jul;8(4):695-701. doi:
32. Jones SM, Agbotounou WK, Fleischer DM, Burks AW, Pesek RD, Harris MW, et al. Safety of epicutaneous immunotherapy for the treatment of peanut allergy: a phase 1 study using the Viaskin patch. J Allergy Clin Immunol. 2016 Apr;137(4):1258-1261. doi:
33. Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med. 2003 Jan 6;197(1):111-9. doi:
34. Aroeira LS, Cardillo F, De Albuquerque DA, Vaz NM, Mengel J. Anti-IL-10 treatment does not block either the induction or the maintenance of orally induced tolerance to OVA. Scand J Immunol. 1995 Apr;41(4):319-23.
35. Barone KS, Tolarova DD, Ormsby I, Doetschman T, Michael JG. Induction of oral tolerance in TGF-beta 1 null mice. J Immunol. 1998 Jul;161(1):154-60.
36. Fowler S, Powrie F. CTLA-4 expression on antigen-specific cells but not IL-10 secretion is required for oral tolerance. Eur J Immunol. 2002 Oct;32(10):2997-3006.
37. Fuss IJ, Boirivant M, Lacy B, Strober W. The interrelated roles of TGF-beta and IL-10 in the regulation of experimental colitis. J Immunol. 2002 Jan 15;168(2):900-8.
38. Cottrez F, Groux H. Regulation of TGF-beta response during T cell activation is modulated by IL-10. J Immunol. 2001 Jul 15;167(2):773-8.
39. Kitani A, Fuss I, Nakamura K, Kumaki F, Usui T, Strober W. Transforming growth factor (TGF)-beta1- producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-beta1-mediated fibrosis. J Exp Med. 2003 Oct 20;198(8):1179-88. doi:
40. Dieckmann D, Bruett CH, Ploettner H, Lutz MB, Schuler G. Human CD4(+)CD25(+) regulatory, contact- dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells. J Exp Med. 2002 Jul 15;196(2):247-53.
41. Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J. Regulatory T cells selectively express Toll-like receptors and are activated by lipopolysac- charide. J Exp Med. 2003 Feb 17;197(4):403-11.
42. Netea MG, Sutmuller R, Hermann C, Van der Graaf CA, Van der Meer JW, van Krieken JH, et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol. 2004 Mar;172(6):3712-8.
43. Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H. Characterization of dendritic cells that induce tolerance and T regulatory cell differentiation in vivo. Immunity. 2003 May;18(5):605-17.
44. Suaini NH, Zhang Y, Vuillermin PJ, Allen KJ, Harrison LC. Immune modulation by vitamin D and its relevance to food allergy. Nutrients. 2015 Jul 27;7(8):6088-108. doi:
45. Sicherer SH, Wood RA, Vickery BP, Jones SM, Liu AH, Fleischer DM, et al. The natural history of egg allergy in an observational cohort. J Allergy Clin Immunol. 2014 Feb;133(2):492-9. doi:
46. Oliveira RP, Santiago AF, Ficker SM, Gomes-Santos AC, Faria AMC. Antigen administration by continuous feeding enhances oral tolerance and leads to long-lasting effects. J Immunol Methods. 2015 Jun;421:36-43. doi:
47. Bilsborough J, George TC, Norment A, Viney JL. Mucosal CD8+ with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology. 2003 Apr;108(4):481-92. doi:
48. Gilliet M, Liu YJ. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med. 2002 Mar;195(6):695-704. doi:
49. Watanabe T, Yoshida M, Shirai Y, Yamori M, Yagita H, Itoh T, et al. Administration of an antigen at a high dose generates regulatory CD4+ T cells expressing CD95 ligand and secreting IL-4 in the liver. J Immunol. 2002 Mar;168(5):2188-99. doi:
50. Watanabe T, Katsukura H, Shirai Y, Yamori M, Nishi T, Chiba T, et al. A liver tolerates a portal antigen by generating CD11c+ cells, which select Fas ligand+ Th2 cells via apoptosis. Hepatology. 2003 Aug;38(2):403-12. doi:

Information about authors:
Karpuk N.A. – Candidate of Medical Sciences, associate professor of the Chair of General Dentistry with the course of Prosthetic Dentistry, the Faculty for advanced Training & Retraining, Vitebsk State Order of Peoples’ Friendship Medical University.

Correspondence address: Republic of Belarus, 210009, Vitebsk, 27 Frunze ave., Vitebsk State Order of Peoples’ Friendship Medical University, Chair of General Dentistry with the course of Prosthetic Dentistry, the Faculty for advanced Training & Retraining. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Natalya A. Karpuk.

Поиск по сайту