DOI: https://doi.org/10.22263/2312-4156.2019.4.17
Vykhrystsenka L.R., Schastlivenko A.I., Prakoshyna N.R.
The immune system impact on the development of arterial hypertension. Literature review
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus
Vestnik VGMU. 2019;18(4):17-27.
Abstract.
The article presents modern studies on the role of the immune system in the pathogenesis of arterial hypertension (AH). Many scientific researches have improved the understanding of the molecular mechanisms of hypertension development and made it possible to evaluate the contribution of factors and cells of innate immunity, such as the complement system, antigen-presenting cells, and pattern recognition receptors; and those of adaptive immunity represented by B- and T-lymphocytes, including subpopulations of T-helper (Th) type 1, Th2, Th17, T-regulatory cells, T-cytotoxic cells; as well as cytokines that regulate the immune response through intercellular and intersystemic interaction.
The results of this literature review convincingly indicate that modulation of the immune response may reduce the risk of arterial hypertension development and target-organ damage. Several clinical studies in this field, conducted recently enable the prognostication of the introduction of results and achievements from general immunology into clinical medicine.
Key words: arterial hypertension, angiotensin II, innate immunity, adaptive immunity, cytokines.
References
1. NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet. 2017 Jan;389(10064):37-55. doi: http://dx.doi.org/10.1016/S0140-6736(16)31919-5
2. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. 2018 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2018 Sep;39(1):3021-104. doi: http://dx.doi.org/10.1093/eurheartj/ehy339
3. Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med. 2018 Jan;215(1):21-33. doi: http://dx.doi.org/10.1084/jem.20171773
4. Zhang C, Li Y, Wang C, Wu Y, Du J. Antagonist of C5aR prevents cardiac remodeling in angiotensin II-induced hypertension. Am J Hypertens. 2014 Jun;27(6):857-64. doi: http://dx.doi.org/10.1093/ajh/hpt274
5. Ashok ML, Prashanth VN, Hemanth K. Complement C3 levels in metabolic syndrome. Int J Basic Med Science. 2017 Jun;7(5).
6. McKenzie A, Spits H, Eberl G. Innate lymphoid cells in inflammation and immunity. Immunity. 2014 Sep;41(3):366-374. doi: http://dx.doi.org/10.1016/j.immuni.2014.09.006
7. Kossmann S, Schwenk M, Hausding M, Karbach SH, Schmidgen MI, Brandt M, et al. Angiotensin II-induced vascular dysfunction depends on interferon-γ- driven immune cell recruitment and mutual activation of monocytes and NK-cells. Arterioscler Thromb Vasc Biol. 2013 Jun;33(6):1313-9. doi: http://dx.doi.org/10.1161/ATVBAHA.113.301437
8. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010 Feb;55(2):500-7. doi: http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.145094
9. Chen J, Bundy JD, Hamm LL, Hsu CY, Lash J, Miller ER, et al. Inflammation and apparent treatment-resistant hypertension in patients with chronic kidney disease: the results from the CRIC Study. Hypertension. 2019 Apr;73(4):785-793. doi: http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.12358
10. Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 2011 Sep;124(12):1370-81. doi: http://dx.doi.org/10.1161/CIRCULATIONAHA.111.034470
11. Santisteban MM, Ahmari N, Carvajal JM, Zingler MB, Qi Y, Kim S, et al. Involvement of bone marrow cells and neuroinflammation in hypertension. Circ Res. 2015 Jul;117(2):178-91. doi: http://dx.doi.org/10.1161/CIRCRESAHA.117.305853
12. Vinh A, Chen W, Blinder Y, Weiss D, Taylor WR, Goronzy JJ, et al. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation. 2010 Dec;122(24):2529-37. doi: http://dx.doi.org/10.1161/CIRCULATIONAHA.109.930446
13. Thang LV, Demel SL, Crawford R, Kaminski NE, Swain GM, Van Rooijen N, et al. Macrophage depletion lowers blood pressure and restores sympathetic nerve α2-adrenergic receptor function in mesenteric arteries of DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol. 2015 Oct;309(7):H1186-97. doi: http://dx.doi.org/10.1152/ajpheart.00283.2015
14. Kared H, Camous X, Larbi A. T cells and their cytokines in persistent stimulation of the immune system. Curr Opin Immunol. 2014 Aug;29:79-85. doi: http://dx.doi.org/10.1016/j.coi.2014.05.003
15. Kirabo A, Fontana V, de Faria AP, Loperena R, Galindo CL, Wu J, et al. DС isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest. 2014 Oct;124(10):4642-56. doi: http://dx.doi.org/10.1172/JCI74084
16. Macconi D, Chiabrando C, Schiarea S, Aiello S, Cassis L, Gagliardini E, et al. Proteasomal processing of albumin by renal dendritic cells generates antigenic peptide. J Am Soc Nephrol. 2009 Jan;20(1):123-30. doi: http://dx.doi.org/10.1681/ASN.2007111233
17. McGettrick AF, O’Neill LA. Localisation and trafficking of Toll-like receptors: an important mode of regulation. Curr Opin Immunol. 2010 Feb;22(1):20-7. doi: http://dx.doi.org/10.1016/j.coi.2009.12.002
18. Rodriguez-Iturbe B. Autoimmunity in the pathogenesis of hypertension. Hypertension. 2015;67(3):477-83.
19. Rosin DL, Okusa MD. Dangers within: DAMP responses to damage and cell death in kidney disease. J Am Soc Nephrol. 2011 Mar;22(3):416-25. doi: http://dx.doi.org/10.1681/ASN.2010040430
20. Bomfim GF, Echem C, Martins CB, Costa TJ, Sartoretto SM, Dos Santos RA, et al. Toll-like receptor 4 inhibition reduces vascular inflammation in spontaneously hypertensive rats. Life Sci. 2015 Feb;122:1-7. doi: http://dx.doi.org/10.1016/j.lfs.2014.12.001
21. Sollinger D, Eißler R, Lorenz S, Strand S, Chmielewski S, Aoqui C, et al. Damage-associated molecular pattern activated Toll-like receptor 4 signalling modulates blood pressure in L-NAME-induced hypertension. Cardiovasc Res. 2014 Mar;101(3):464-72. doi: http://dx.doi.org/10.1093/cvr/cvt265
22. Kleinbongard P, Heusch G, Schulz R. TNFα in atherosclerosis, myocardial ischemia / reperfusion and heart failure. Pharmacol Ther. 2010 Sep;127(3):295-314. doi: http://dx.doi.org/10.1016/j.pharmthera.2010.05.002
23. Kunnas T, Maatta K, Nikkari ST. NLR family pyrin domain containing 3 (NLRP3) inflammasome gene polymorphism rs7512998 (C>T) predicts aging-related increase of blood pressure, the TAMRISK study. Immun Ageing. 2015 Oct;12:19. doi: http://dx.doi.org/10.1186/s12979-015-0047-7
24. Dai X, Li H, Chen Y, Wang J, Li J, Wu Feng, et al. Mechanisms in hypertension and target organ damage: Is the role of the thymus key? Int J Mol Med. 2018 Jul;42(1):3-12. doi: http://dx.doi.org/10.3892/ijmm.2018.3605
25. Crowley SD, Song YS, Lin EE, Griffiths R, Kim HS, Ruiz P. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R1089-97. doi: http://dx.doi.org/10.1152/ajpregu.00373.2009
26. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007 Oct;204(10):2449-60. doi: http://dx.doi.org/10.1084/jem.20070657
27. Trott DW, Thabet SR, Kirabo A, Saleh MA, Itani H, Norlander AE, et al. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension. 2014 Nov;64(5):1108-15. doi: http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.04147
28. Youn JC, Yu HT, Lim BJ, Koh MJ, Lee J, Chang DY, et al. Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension. 2013 Jul;62(1):126-33. doi: http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.00689
29. Shebeko VI, Rodionov YuYa. Angiotensin II and the “danger signals” for the immune system. Immunopatologiia Allergologiia Infektologiia. 2007;(2):76-83. (In Russ.)
30. Ji Q, Cheng G, Ma N, Huang Y, Lin Y, Zhou Q, et al. Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis Markers. 2017;2017:7146290. doi: http://dx.doi.org/10.1155/2017/7146290
31. Mirhafez SR, Mohebati M, Feiz Disfani M, Saberi Karimian M, Ebrahimi M, Avan A, et al. An imbalance in serum concentrations of inflammatory and anti-inflammatory cytokines in hypertension. J Am Soc Hypertens. 2014 Sep;8(9):614-23. doi: http://dx.doi.org/10.1016/j.jash.2014.05.007
32. Abais-Battad JM, Rudemiller NP, Mattson DL. Mechanisms of T-cell activation and pathways of hypertension. Curr Opin Nephrol Hypertens. 2015 Sep;24(5):470-4. doi: http://dx.doi.org/10.1097/MNH.0000000000000146
33. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013 Apr;496(7446):518-22. doi: http://dx.doi.org/10.1038/nature11868
34. Liu Z, Zhao Y, Wei F, Ye L, Lu F, Zhang H, et al. Treatment with telmisartan/rosuvastatin combination has a beneficial synergistic effect on ameliorating Th17/Treg functional imbalance in hypertensive patients with carotid atherosclerosis. Atherosclerosis. 2014 Mar;233(1):291-9. doi: http://dx.doi.org/10.1016/j.atherosclerosis.2013.12.004
35. Zhang W, Wang W, Yu H, Zhang Y, Dai Y, Ning C, et al. Interleukin 6 underlies angiotensin II-induced hypertension and chronic renal damage. Hypertension. 2012 Jan;59(1):136-44. doi: http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.173328
36. Mian MO, Barhoumi T, Briet M, Paradis P, Schiffrin EL. Deficiency of T-regulatory cells exaggerates angiotensin II-induced microvascular injury by enhancing immune responses. J Hypertens. 2016 Jan;34(1):97-108. doi: http://dx.doi.org/10.1097/HJH.0000000000000761
37. Amador CA, Barrientos V, Peña J, Herrada AA, González M, Valdés S, et al. Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension. 2014 Apr;63(4):797-803. doi: http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02883
38. Khamis RY, Hughes AD, Caga-Anan M, Chang CL, Boyle JJ, Kojima C, et al. High serum immunoglobulin G and M levels predict freedom from adverse cardiovascular events in hypertension: a nested case-control substudy of the Anglo-Scandinavian Cardiac Outcomes Trial. EBioMedicine. 2016 Jul;9:372-380. doi: http://dx.doi.org/10.1016/j.ebiom.2016.06.012
39. Chan CT, Sobey CG, Lieu M, Ferens D, Kett MM, Diep H, et al. Obligatory role for B cells in the development of angiotensin II-dependent hypertension. Hypertension. 2015 Nov;66(5):1023-33. doi: http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05779
40. Zhang J, Patel MB, Griffiths R, Mao A, Song YS, Karlovich NS, et al. Tumor necrosis factor-alpha produced in the kidney contributes to angiotensin II-dependent hypertension. Hypertension. 2014 Dec;64(6):1275-81. doi: http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.03863
41. Shinetova LE, Omar A, Elubaeva L, Akparova AYu, Bersimbaev RI. Cytokines and arterial hypertension. Vestn KazNMU. 2017;(1):264-8. (In Russ.)
42. Hashmat S, Rudemiller N, Lund H, Abais-Battad JM, Van Why S, Mattson DL. Interleukin-6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats. Am J Physiol Renal Physiol. 2016 Sep;311(3):F555-61. doi: http://dx.doi.org/10.1152/ajprenal.00594.2015
43. McMaster WG, Kirabo A, Madhur MS, Harrison DG. Inflammation, immunity, and hypertensive end-organ damage. Circ Res. 2015 Mar;116(6):1022-33. doi: http://dx.doi.org/10.1161/CIRCRESAHA.116.303697
44. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007 Sep;59(3):251-87.
45. Zhang J, Rudemiller NP, Patel MB, Karlovich NS, Wu M, McDonough AA, et al. Interleukin-1 receptor activation potentiates salt reabsorption in angiotensin II-induced hypertension via the NKCC2 co-transporter in the nephron. Cell Metab. 2016 Feb;23(2):360-8. doi: http://dx.doi.org/10.1016/j.cmet.2015.11.013
46. Vázquez-Oliva G, Fernández-Real JM, Zamora A, Vilaseca M, Badimón L. Lowering of blood pressure leads to decreased circulating interleukin-6 in hypertensive subjects. J Hum Hypertens. 2005 Jun;19(6):457-62.
47. Luther JM, Gainer JV, Murphey LJ, Yu C, Vaughan DE, Morrow JD, et al. Angiotensin II induces interleukin-6 in humans through a mineralocorticoid receptor-dependent mechanism. Hypertension. 2006 Dec;48(6):1050-7.
48. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010 Feb;55(2):500-7. doi: http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.145094
49. Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D, et al. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J. 2016 May;30(5):1987-99. doi: http://dx.doi.org/10.1096/fj.201500088R
50. Harmon AC, Cornelius DC, Amaral LM, Faulkner JL, Cunningham MW, Wallace K, et al. The role of inflammation in the pathology of preeclampsia. Clin Sci (Lond). 2016 Mar;130(6):409-19. doi: http://dx.doi.org/10.1042/CS20150702
Information about authors:
Vykhrystenka L.R. – Doctor of Medical Sciences, professor, head of the General Practitioner Chair with the course of Outpatient Therapy, Vitebsk State Order of Peoples’ Friendship Medical University;
Schastlivenko A.I. – Candidate of Medical Sciences, associate professor of the General Practitioner Chair with the course of Outpatient Therapy, Vitebsk State Order of Peoples’ Friendship Medical University;
Prakoshyna N.R. – Candidate of Medical Sciences, associate professor of the Chair of General and Clinical Pharmacology with the course of the Faculty for Advanced Training & Retraining, Vitebsk State Order of Peoples’ Friendship Medical University.
Correspondence address: Republic of Belarus, 210009, Vitebsk, 27 Frunze ave., Vitebsk State Order of Peoples’ Friendship Medical University, General Practitioner Chair with the course of Outpatient Therapy. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Andrei I. Schastlivenko.