Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2019.4.7

Belyaeva L.E., Pauliukevich A.N.
The early programming of human diseases and the application of nutraceuticals for their prevention: focus on fish oil. Literature review. Part I
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus

Vestnik VGMU. 2019;18(4):7-16.

Abstract.
In the first part of this review the results of experimental, clinical and epidemiological investigations devoted to the study of the consequences of stressors action in the prenatal period have been analyzed. The basic mechanisms of diseases programming in the organisms whose mothers were exposed to various stressors action during pregnancy have been considered. An approach to minimize negative outcomes caused by the action of stressors on the body in the prenatal period with fish oil nutraceutical containing long-chain omega-3 polyunsaturated fatty acids – eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been proposed. Metabolism peculiarities of these polyunsaturated fatty acids in the body have been discussed in the first part of the review as well.
Key words: prenatal stress, early programming of human diseases, epigenetics, long-chain omega-3 polyunsaturated fatty acids.

References

1. On approval of the State program «People’s Health and Demographic Security of the Republic of Belarus» for 2016-2020: postanovlenie Soveta Ministrov Resp Belarus', 14 marta 2016 g, № 200. Nats Reestr Pravovykh Aktov Resp Belarus'. 2016;(5/41840). (In Russ.)
2. Barker DJ. In utero programming of chronic diseases. Clin Sci (Lond). 1998 Aug;95(2):115-28.
3. Belyaeva LE, Shebeko VI. Gynecological endocrinology: pathophysiological basis. Moscow, RF: Med lit, 2009. 256 р. (In Russ.)
4. Alexander BT, Dasinger JH, Intapad S. Fetal programming and cardiovascular pathology. Compr Physiol. 2015 Apr;5(2):997-1025. doi: http://dx.doi.org/10.1002/cphy.c140036
5. Robinson R, Lahti-Pulkkinen M, Heinonen K, Reynolds RM, Räikkönen K. Fetal programming of neuropsychiatric disorders by maternal pregnancy depression: a systematic mini review. Pediatr Res. 2019 Jan;85(2):134-145. doi: http://dx.doi.org/10.1038/s41390-018-0173-y
6. Brannigan R, Cannon M, Tanskanen A, Huttunen MO, Leacy FP, Clarke MC. The association between subjective maternal stress during pregnancy and offspring clinically diagnosed psychiatric disorders. Acta Psychiatr Scand. 2019 Apr;139(4):304-310. doi: http://dx.doi.org/10.1111/acps.12996
7. Kirkbride JB, Susser E, Kundakovic M, Kresovich JK, Davey Smith G, Relton CL. Prenatal nutrition, epigenetics and schizophrenia risk: Can we test causal effects? Epigenomics. 2012 Jun;4(3):303-15. doi: http://dx.doi.org/10.2217/epi.12.20
8. Izvolskaia MS, Sharova VS, Ignatiuk VM, Voronova SN, Zakharova LA. Abolition of prenatal lipopolysaccharide-induced reproductive disorders in rat male offspring by fulvestrant. Andrologia. 2019 Apr;51(3):e13204. doi: http://dx.doi.org/10.1111/and.13204
9. Ignatiuk VM, Izvolskaya MS, Sharova VS, Voronova SN, Zakharova LA. Disruptions in the reproductive system of female rats after prenatal lipopolysaccharide-induced immunological stress: role of sex steroids. Stress. 2019 Jan;22(1):133-141. doi: http://dx.doi.org/10.1080/10253890.2018.1508440
10. Suh DI, Chang HY, Lee E, Yang SI, Hong SJ. Prenatal Maternal Distress and Allergic Diseases in Offspring: Review of Evidence and Possible Pathways. Allergy Asthma Immunol Res. 2017 May;9(3):200-211. doi: http://dx.doi.org/10.4168/aair.2017.9.3.200
11. Rosa MJ, Hsu HL, Just AC, Brennan KJ, Bloomquist T, Kloog I, et al. Association between prenatal particulate air pollution exposure and telomere length in cord blood: Effect modification by fetal sex. Environ Res. 2019 May;172:495-501. doi: http://dx.doi.org/10.1016/j.envres.2019.03.003
12. Zhang Q, Berger FG, Love B, Banister CE, Murphy EA, Hofseth LJ. Maternal stress and early-onset colorectal cancer. Med Hypotheses. 2018 Dec;121:152-159. doi: http://dx.doi.org/10.1016/j.mehy.2018.09.035
13. Sharma A. Transgenerational epigenetics: Integrating soma to germline communication with gametic inheritance. Mech Ageing Dev. 2017 Apr;163:15-22. doi: http://dx.doi.org/10.1016/j.mad.2016.12.015
14. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006 Feb;31(2):89-97. doi: http://dx.doi.org/10.1016/j.tibs.2005.12.008
15. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013 Aug;341(6146):1237905. doi: http://dx.doi.org/10.1126/science.1237905
16. Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011 Apr;145(3):423-34. doi: http://dx.doi.org/10.1016/j.cell.2011.03.022
17. Maor GL, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 2015 May;31(5):274-80. doi: http://dx.doi.org/10.1016/j.tig.2015.03.002
18. Lay FD, Liu Y, Kelly TK, Witt H, Farnham PJ, Jones PA, et al. The role of DNA methylation in directing the functional organization of the cancer epigenome. Genome Res. 2015 Apr;25(4):467-77. doi: http://dx.doi.org/10.1101/gr.183368.114
19. Kouzarides T. Chromatin modifications and their function. Cell. 2007 Feb;128(4):693-705. doi: http://dx.doi.org/10.1016/j.cell.2007.02.005
20. Oliver SS, Denu JM. Dynamic Interplay between histone H3 modifications and protein interpreters: emerging evidence for a «histone language». Chembiochem. 2011 Jan;12(2):299-307. doi: http://dx.doi.org/10.1002/cbic.201000474
21. Price BD, D’Andrea AD. Chromatin Remodeling at DNA Double Strand Breaks. Cell. 2013 Mar;152(6):1344-54. doi: http://dx.doi.org/10.1016/j.cell.2013.02.011
22. Li W, Nagaraja S, Delcuve GP, Hendzel MJ, Davie JR. Effects of histone acetylation, ubiquitination and variants on nucleosome stability. Biochem J. 1993 Dec;296 ( Pt 3):737-44. doi: http://dx.doi.org/10.1042/bj2960737
23. Dehennaut V, Leprince D, Lefebvre T. O-GlcNAcylation, an Epigenetic Mark. Focus on the Histone Code, TET Family Proteins, and Polycomb Group Proteins. Front Endocrinol (Lausanne). 2014 Sep;5:155. doi: http://dx.doi.org/10.3389/fendo.2014.00155
24. Rousseaux S, Khochbin S. Histone Acylation beyond Acetylation: Terra Incognita in Chromatin Biology. Cell J. 2015 Spring;17(1):1-6
25. Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science. 2010 Oct;330(6004):622-7. doi: http://dx.doi.org/10.1126/science.1190614
26. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007 May;447(7143):425-32. doi: http://dx.doi.org/10.1038/nature05918
27. Dadvand P, Parker J, Bell ML, Bonzini M, Brauer M, Darrow LA, et al. Maternal exposure to particulate air pollution and term birth weight: a multi-country evaluation of effect and heterogeneity. Environ Health Perspect. 2013 Mar;121(3):267-373. doi: http://dx.doi.org/10.1289/ehp.1205575
28. Roseboom TJ, van der Meulen JH, Osmond C, Barker DJ, Ravelli AC, Schroeder-Tanka JM, et al. Coronary heart disease after prenatal exposure to the Dutch famine, 1944-45. Heart. 2000 Dec;84(6):595-8. doi: http://dx.doi.org/10.1136/heart.84.6.595
29. King BR, Nicholson RC, Smith R. Placental corticotrophin-releasing hormone, local effects and fetomaternal endocrinology. Stress. 2001 Dec;4(4):219-33.
30. Robinson BG, Emanuel RL, Frim DM, Majzoub JA. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5244-8. doi: http://dx.doi.org/10.1073/pnas.85.14.5244
31. Davis EP, Head K, Buss C, Sandman CA. Prenatal maternal cortisol concentrations predict neurodevelopment in middle childhood. Psychoneuroendocrinology. 2017 Jan;75:56-63. doi: http://dx.doi.org/10.1016/j.psyneuen.2016.10.005
32. Cuffe JS, Turton EL, Akison LK, Bielefeldt-Ohmann H, Moritz KM. Prenatal corticosterone exposure programs sex-specific adrenal adaptations in mouse offspring. J Endocrinol. 2017 Jan;232(1):37-48. doi: http://dx.doi.org/10.1530/JOE-16-0417
33. McTernan CL, Draper N, Nicholson H, Chalder SM, Driver P, Hewison M, et al. Reduced placental 11beta-hydroxysteroid dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth restriction: an analysis of possible mechanisms. J Clin Endocrinol Metab. 2001 Oct;86(10):4979-83.
34. Sarkar S, Tsai SW, Nguyen TT, Plevyak M, Padbury JF, Rubin LP. Inhibition of placental 11beta-hydroxysteroid dehydrogenase type 2 by catecholamines via alpha-adrenergic signaling. Am J Physiol Regul Integr Comp Physiol. 2001 Dec;281(6):R1966-74. doi: http://dx.doi.org/10.1152/ajpregu.2001.281.6.R1966
35. Alfaidy N, Gupta S, DeMarco C, Caniggia I, Challis JR. Oxygen regulation of placental 11 beta-hydroxysteroid dehydrogenase 2: physiological and pathological implications. J Clin Endocrinol Metab. 2002 Oct;87(10):4797-805. doi: http://dx.doi.org/10.1210/jc.2002-020310
36. Kossintseva I, Wong S, Johnstone E, Guilbert L, Olson DM, Mitchell BF. Proinflammatory cytokines inhibit human placental 11beta-hydroxysteroid dehydrogenase type 2 activity through Ca2+ and cAMP pathways. Am J Physiol Endocrinol Metab. 2006 Feb;290(2):E282-8
37. O'Donnell KJ, Bugge Jensen A, Freeman L, Khalife N, O'Connor TG, Glover V. Maternal prenatal anxiety and downregulation of placental 11beta-HSD2. Psychoneuroendocrinology. 2012 Jun;37(6):818-26. doi: http://dx.doi.org/10.1016/j.psyneuen.2011.09.014
38. Xiong F, Zhang L. Role of the hypothalamic-pituitary-adrenal axis in developmental programming of health and disease. Front Neuroendocrinol. 2013 Jan;34(1):27-46. doi: http://dx.doi.org/10.1016/j.yfrne.2012.11.002
39. Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med. 1998 Aug;129(3):229-40. doi: http://dx.doi.org/10.7326/0003-4819-129-3-199808010-00012
40. Krebs C, Macara LM, Leiser R, Bowman AW, Greer IA, Kingdom JC. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol. 1996 Dec;175(6):1534-42.
41. Myatt L. Placental adaptive responses and fetal programming. J Physiol. 2006 Apr;572(Pt 1):25-30. doi: http://dx.doi.org/10.1113/jphysiol.2006.104968
42. Genbacev O, Zhou Y, Ludlow JW, Fisher SJ. Regulation of human placental development by oxygen tension. Science. 1997 Sep;277(5332):1669-72.
43. Brower V. Nutraceuticals: poised for healthy slice of the healthcare market? Nat Biotechnol. 1998 Aug;16(8):728-31. doi: http://dx.doi.org/10.1038/nbt0898-728
44. United States Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for Standard Reference. 2019. Available from: https://ndb.nal.usda.gov/ndb/foods/show/04589 [Accessed 13th Aug 2019].
45. Burdge GC, Calder PC. Dietary alpha-linolenic acid and health-related outcomes: a metabolic perspective. Nutr Res Rev. 2006 Jun;19(1):26-52. doi: http://dx.doi.org/10.1079/NRR2005113
46. Abedi E, Sahari MA. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr. 2014 Sep;2(5):443-63. doi: http://dx.doi.org/10.1002/fsn3.121
47. Liu JJ, Green P, John Mann J, Rapoport SI,Sublette ME. Pathways of polyunsaturated fatty acid utilization: Implications for brain function in neuropsychiatric health and disease. Brain Res. 2015 Feb;1597:220-46. doi: http://dx.doi.org/10.1016/j.brainres.2014.11.059
48. Mozaffarian D, Pischon T, Hankinson SE, Rifai N, Joshipura K, Willett WC, et al. Dietary intake of trans fatty acids and systemic inflammation in women. Am J Clin Nutr. 2004 Apr;79(4):606-12. doi: http://dx.doi.org/10.1093/ajcn/79.4.606
49. Ghezzi S, Risé P, Ceruti S, Galli C. Effects of cigarette smoke on cell viability, linoleic acid metabolism and cholesterol synthesis, in THP-1 cells. Lipids. 2007 Jul;42(7):629-36.
50. Cicero AFG, Colletti A. Krill oil: evidence of a new source of polyunsaturated fatty acids with high bioavailability. Clin Lipidol. 2015;10:1-4.

Information about authors:
Belyaeva L.E. – Candidate of Medical Sciences, associate professor, head of the Chair of Pathologic Physiology, Vitebsk State Order of Peoples’ Friendship Medical University;
Pauliukevich A.N. – Master of Medical Sciences, lecturer of the Chair of Pathologic Physiology, Vitebsk State Order of Peoples’ Friendship Medical University.

Correspondence address: Republic of Belarus, 210009, Vitebsk, 27 Frunze ave., Vitebsk State Order of Peoples’ Friendship Medical University, Chair of Pathologic Physiology. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Lyudmila E. Belyaeva.

Поиск по сайту