DOI: https://doi.org/10.22263/2312-4156.2020.4.98
Sapon E.S., Lugin V.G.
The development and validation of the modality for quantitative amoxicillin assay in solid dosage forms by means of FTIR spectroscopy
Belarusian State Technological University, Minsk, Republic of Belarus
Vestnik VGMU. 2020;19(4):98-106.
Abstract.
The aim of this study was to develop and validate the modality for quantitative amoxicillin assay in solid dosage forms by means of FTIR spectroscopy, to determine its feasibility for quantitative analysis and control of dosing uniformity. Tablets and capsules with an amoxicillin dose of 500 mg and 1000 mg (in the form of amoxicillin trihydrate) served as the objects of the study, amoxicillin trihydrate standard was considered to be a standard sample. The tested and standard mixtures were prepared so that the intensity of analytical isolated strip with 1519 cm-1 maximum was in the range of 0.2-0.7 absorption units, which corresponds to minimum error of determining optical density.
The results of metrological characteristics analysis showed linear dependence of optical density on the content of amoxicillin trihydrate in the pressed matrix of potassium bromide, the correlation coefficient being 0.9991. Correlation coefficient requirements are met when the value of measurement results uncertainty is 2.3% or more. Modality accuracy is within the limits of 97.1-101.7% (the recommended range is 98-102%).
The relative standard deviation on determining precision at the level of convergence RSD makes up 0.72%, which does not exceed the recommended value of 2%. Specificity and linearity were confirmed, the limits of detection and quantification were determined, they amounted to 0.0480 mg and 0.1454 mg, respectively. The calculated characteristics satisfy the requirements made to them with the purpose of content uniformity control of amoxicillin in the solid dosage form.
Key words: amoxicillin, FTIR spectroscopy, validation, modality, assay, content uniformity, drug.
References
1. Aliyev AM, Babazade GM. Comparative determination of amoxicillin in capsules by the methods of mercurimetry and liquid chromatography. Khim-Farmatsevt Zhurn. 2011;45(4):53-6. (In Russ.)
2. Rojanarataa T, Opanasopita P, Ngawhirunpata T, Saehuanb C, Wiyakrutta S. A simple, sensitive and green bienzymatic UV-spectrophotometric assay of amoxicillin formulations. Enzyme Microb Technol. 2010 Mar;46(3-4):292-6. doi: http://dx.doi.org/10.1016/j.enzmictec.2009.11.011
3. Kulapina EG, Snesarev SV, Makarova NM, Pogorelova ES. Arrays of potentiometric sensors for the separate determination of penicillin antibiotics using the artificial neural network method. Zhurn Analit Khimii. 2011;66(1):82-7. (In Russ.)
4. Bonfilio R, de Araujo MB, Salgado HRN. Recent applications of analytical techniques for quantitative pharmaceutical analysis: a review. WSEAS Trans Biol Biomed. 2010;7(4):316-38.
5. Yurgel NV, Mladentsev AL, Burdeyn AV, Getman MA, Malina AA, Kosenko VV, red. Guide for the pharmaceutical industry: metod rekomendatsii. Ch 1-3. Moscow, RF: Sport i kul'tura – 2000; 2007. 192 р. (In Russ.)
6. Sheryakov AA, red. State Pharmacopoeia of the Republic of Belarus: (GF. RB II): razrab na osnove Evrop Farmakopei: v 2 t: vved v deistvie s 1 ianv 2013 g prikazom M-va zdravookhraneniia RB ot 25.04.2012 g. № 453. Molodechno, RB: Pobeda; 2012. T 1: Obshchie meto-dy kontrolia kachestva lekarstvennykh sredstv. 1220 р. (In Russ.)
7. Georgiyevskiy VP, red. Analytical chemistry in the creation, standardization and quality control of drugs: v 3 t. Kharkov, Ukraine: NTMT; 2011. T 3: Metrological and regulatory support for the creation, production and quality control of medicines. 520 р. (In Russ.)
8. Production of medicines. Application of statistical methods for validation: TKP 438-2012 (02041). Vved 2013-03-01. Izd ofits. Minsk, RB: Departament farma-tsevticheskoi promyshlennosti Ministerstva zdravookhraneniia Respubliki Belarus'; 2012. 27 р. (In Russ.)
9. Смит А, Тарасевич БН, пер. Прикладная ИК-спектроскопия: основы, техника, аналитическое применение. Москва, РФ: Мир Smit A, Tarasevich BN, per. Applied IR spectroscopy: fundamentals, technology, analytical application. Moscow, RF: Mir; 1982. 328 р. (In Russ.)
10. United States Pharmacopeial Convention. United States Pharmacopoeia 30 – National Formulary 25. Rockville, USA; 2007.
Information about authors:
Sapon E.S. – associate research officer of the Center for Physical and Chemical Research Methods, Belarusian State Technological University;
Lugin V.G. – Candidate of Chemical Sciences, associate professor, director of the Center for Physical and Chemical Research Methods, Belarusian State Technological University,
ORCID: https://orcid.org/0000-0001-6713-2647
Correspondence address: Republic of Belarus, 220006, Minsk, 13a Sverdlov str., Belarusian State Technological University. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Elena S. Sapon.