DOI: https://doi.org/10.22263/2312-4156.2021.2.8
Vasilyuk A.A., Kozlovsky V.I.
Promising directions for the application of piperidine derivatives as structural components of neurotropic drugs
Grodno State Medical University, Grodno, Republic of Belarus
Vestnik VGMU. 2021;20(2):8-17.
Abstract.
Piperidine is one of the most common heterocycles, and its derivatives are found in many pharmacological groups, including neurotropic drugs. These compounds are numerous among analgesics, and, in addition to “classical” promedol, fentanyl and its derivatives, the paper presents the results of studying new compounds with analgesic activity and piperidine cycle. Reviews of such piperidine antipsychotics as haloperidol and risperidone have been considered, and new compounds showing antipsychotic activity through their effects on dopamine and serotonin receptors have been elucidated. The data on the influence of methylphenidate on the brain in case of attention deficit/ hyperactivity disorder (ADHD) have been analyzed, which help to understand the disturbances occurring in this disease. Tiagabine has been considered as an antiepileptic agent reducing the number of seizures in resistant forms of partial epilepsy, as well as the activation of microglia and may be effective in neurodegenerative diseases. The last section is devoted to drugs for the treatment of Alzheimer’s disease (AD), namely donepezil, its modifications, and some new compounds potentially capable of inhibiting AD progression through the inhibition of Aβ42 protein synthesis.
Key words: piperidine derivatives, opioid analgesics, antipsychotic drugs, Parkinson’s disease, Alzheimer’s disease, epilepsy.
References
1. Asif M. Biological Potential and Chemical Properties of Pyridine and Piperidine Fused Pyridazine Compounds: Pyridopyridazine a Versatile Nucleus. Asian J Chem Pharm. Sci. 2016;1(1):29-35.
2. Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV, et al. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box. Molecules. 2015 Sep 16;20(9):16852-91. doi: http://dx.doi.org/10.3390/molecules200916852
3. Baumann M, Baxendale IR. An overview of the synthetic routes to the best-selling drugs containing 6-membered heterocycles. Beilstein J Org Chem. 2013 Oct 30;9:2265-319. doi: http://dx.doi.org/10.3762/bjoc.9.265
4. Ngemenya MN, Abwenzoh GN, Ikome HN, Zofou D, Ntie-Kang F, Efange SMN. Structurally simple synthetic 1,4-disubstituted piperidines with high selectivity for resistant Plasmodium falciparum. BMC Pharmacol Toxicol. 2018 Jul 4;19(1):42. doi: http://dx.doi.org/10.1186/s40360-018-0233-2
5. Kozlovskii VI, Praliev KD, Goncharuk VV, Zavodnik LB, Akhmetova GS, Iskakova TK, i dr. Analgesic activity of original substances of the piperidine series: an experimental study on a model of thermal irritation. Zhurn GrGMU. 2014;(3):38-41. (In Russ.)
6. Vardanyan RS, Hruby VJ. Fentanyl-related compounds and derivatives: current status and future prospects for pharmaceutical applications. Future Med Chem. 2014 Mar;6(4):385-412. doi: http://dx.doi.org/10.4155/fmc.13.215
7. Bradley CS, Parsa FD. Avoiding Opioids and Their Harmful Side Effects in the Postoperative Patient: Exogenous Opioids, Endogenous Endorphins, Wellness, Mood, and Their Relation to Postoperative Pain. Hawaii J Med Public Health. 2016 Mar;75(3):63-7.
8. Zaitceva SE, Galan SE, Pavlova LA. Prospects for the Search for kappa-opioid receptor Agonists with analgesic activity (review). Khim-Farmatsevt Zhurn. 2017;51(10):3-11. (In Russ.)
9. Ansari S, Arif1 S, Mushtaq N, Ahmed A, Akhtar S, Munawar R, et al. Synthesis, Pharmacological Evaluation and In-Silico Studies of Some Piperidine Derivatives as Potent Analgesic Agents. J Dev Drugs. 2017;6(1):2-9. doi: http://dx.doi.org/10.4172/2329-6631.1000170
10. Jahan S, Akhtar S, Kamil A, Mushtaq N, Saify ZS, Arif M. Analgesic activity of alkyl piperidine derivatives. Pak J Pharm Sci. 2016 Jan;29(1):77-82.
11. Spahn V, Del Vecchio G, Rodriguez-Gaztelumendi A, Temp J, Labuz D, Kloner M, et al. Opioid receptor signaling, analgesic and side effects induced by a computationally designed pH-dependent agonist. Sci Rep. 2018;8:8965. doi: http://dx.doi.org/10.1038/ s41598-018-27313-4
12. Akhmetova GS, Amantaeva AK, Praliev KD, Moiseeva LM, Lukianova MS, Koltunova AA, i dr. Synthesis and pharmacological properties of a new homologue of the domestic original analgesic drug prosidol. Izv Tom Plitekhn U-ta. 2010;317(3):140-3. (In Russ.)
13. Vasiliuk AA, Kozlovskii VI. Synthesis and pharmacological properties of a new homologue of a domestic original analgesic drug PROSIDOL Screening of the analgesic activity of new piperidine derivatives on models of chemical and thermal irritation. V: Grodn gos med un-t; redkol: EN Krotkova (otv red) [i dr]. Sovremennye dostizheniia molodykh uchenykh v meditsine 2020 [Elektronnyi resurs]: sb materialov VII Resp nauch-prakt konf s mezhdunar uchastiem, Grodno, 27 noiab 2020 g. Grodno, RB; 2020. R. 46-9. 1 elektron opt disk. (In Russ.)
14. Vasiliuk AA, Gizmont EIu, Kravchuk AP. Comparison of analgesic properties of new piperidine derivatives on models of thermal and chemical irritation. V: Viteb gos med un-t; Shchastnogo AT, red. Aktual'nye voprosy sovremennoi meditsiny i farmatsii: materialy 72-i nauch-prakt konf studentov i molodykh uchenykh, Vitebsk 12-13 maia 2020 g. Vitebsk, RB; 2020. Р. 687-90. (In Russ.)
15. Safety data sheet: Diclofenac (sodium salt). Available from: https://www.caymanchem.com/msdss/70680m.pdf. [Accessed 31th March 2021].
16. Vardanyan R. Classes of Piperidine Based Drugs. In: Vardanyan R. Piperidine-Based Drug Discovery. Tucson; 2017. P. 303-8.
17. Dold M, Samara MT, Li C, Tardy M, Leucht S. Haloperidol versus first-generation antipsychotics for the treatment of schizophrenia and other psychotic disorders. Cochrane Database Syst Rev. 2015 Jan 16;1:CD009831. doi: http://dx.doi.org/10.1002/14651858.CD009831.pub2
18. Danilov DS. Modern classification of antipsychotic drugs and their significance for clinical practice (current state of the issue and its prospects). Obozrenie Psikhiatrii Med Psikhologii. 2010;(3):36-42. (In Russ.)
19. Khaustova EA, Bezsheiko VG. Atypical antipsychotics in schizophrenia: efficacy, safety, treatment strategies. Neironews. 2014;(1):23-7. (In Russ.)
20. Yin Chen, Xiangqing Xu, Xin Liu, Minquan Yu, Bi-Feng Liu, Guisen Zhang. Synthesis and Evaluation of a Series of 2-Substituted-5-Thiopropylpiperazine (Piperidine)-1,3,4-Oxadiazoles Derivatives as Atypical Antipsychotics. PLoS One. 2012;7(4):e35186. doi: http://dx.doi.org/10.1371/journal.pone.0035186
21. Rattehalli RD, Zhao S, Li BG, Jayaram MB, Xia J, Sampson S. Risperidone versus placebo for schizophrenia. Cochrane Database Syst Rev. 2016 Dec 15;12(12):CD006918. doi: http://dx.doi.org/10.1002/14651858.CD006918.pub3
22. Komossa K, Rummel-Kluge C, Schwarz S, Schmid F, Hunger H, Kissling W, et al. Risperidone versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst Rev. 2011 Jan 19;(1):CD006626. doi: http://dx.doi.org/10.1002/14651858.CD006626.pub2
23. Mirabzadeh A, Kimiaghalam P, Fadai F, Samiei M, Daneshmand R. The Therapeutic Effectiveness of Risperidone on Negative Symptoms of Schizophrenia in Comparison with Haloperidol: A Randomized Clinical Trial. Basic Clin Neurosci. 2014;5(3):212-7.
24. Kaczor AA, Targowska-Duda KM, Silva AG, Kondej M, Biała G, Castro M. N-(2-Hydroxyphenyl)-1-[3-(2-oxo-2,3-dihydro-1H-benzimidazol-1yl) propyl] piperidine-4-Carboxamide (D2AAK4), a Multi-Target Ligand of Aminergic GPCRs, as a Potential Antipsychotic. Biomolecules. 2020 Feb 24;10(2):349. doi: http://dx.doi.org/10.3390/biom10020349
25. Vardanyan R. Piperidine Based Drug Discovery. In: Vardanyan R. 2-Substituted and 1,2-Disubstituted Piperidines. Tucson; 2017. C 3. P. 103-18.
26. Faraonea SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev. 2018 Apr;87:255-270. doi: http://dx.doi.org/10.1016/j.neubiorev.2018.02.001
27. Trenque T, Herlem E, Taam MA, Drame M. Methylphenidate off-label use and safety. Springerplus. 2014 Jun;3:286. doi: http://dx.doi.org/10.1186/2193-1801-3-286
28. Chun-Lei Zhang, Ze-Jun Feng, Yue Liu, Xiao-Hua Ji, Ji-Yun Peng, Xue-Han Zhang, et al. Methylphenidate Enhances NMDA-Receptor Response in Medial Prefrontal Cortex via Sigma-1 Receptor: A Novel Mechanism for Methylphenidate Action. PLoS One. 2012;7(12):e51910. doi: http://dx.doi.org/10.1371/journal.pone.0051910
29. Gudasheva TA, Tarasiuk AV, Povarnina PIu, Seredenin SB. Brain neurotrophic factor and its low-molecular-weight mimetics. Farmakokinetika Farmakodinamika. 2017;(3):3-13. (In Russ.)
30. Liu J, Huang D, Xu J, Tong J, Wang Z, Huang L, et al. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation. Sci Rep. 2015 Oct 26;5:15720. doi: http://dx.doi.org/10.1038/srep15720
31. Zafar S, Jabeen I. Molecular Dynamic Simulations to Probe Stereoselectivity of Tiagabine Binding with Human GAT1. Molecules. 2020 Oct 16;25(20):4745. doi: http://dx.doi.org/10.3390/molecules25204745
32. Pulman J, Marson AG, Hutton JL. Tiagabine add-on for drug-resistant partial epilepsy. Cochrane Database Syst Rev. 2012 May 16;5(5):CD001908. doi: http://dx.doi.org/10.1002/14651858.CD001908.pub2
33. Bhat R, Axtell R, Mitra A, Miranda M, Lock C, Tsien RW, et al. Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2580-5. doi: http://dx.doi.org/10.1073/pnas.0915139107
34. Wen-Ying Wang, Meng-Shan Tan, Jin-Tai Yu, Lan Tan. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015 Jun;3(10):136. doi: http://dx.doi.org/10.3978/j.issn.2305-5839.2015.03.49
35. Shen J, Yang X, Yu M, Xiao L, Zhang X, Sun H, et al. Discovery, synthesis, biological evaluation and structure-based optimization of novel piperidine derivatives as acetylcholine-binding protein ligands. Acta Pharmacol Sinica. 2017;38:146-55.
36. Szeto JYY, Lewis SJG. Current Treatment Options for Alzheimer’s Disease and Parkinson’s Disease Dementia. Curr Neuropharmacol. 2016;14(4):326-38. doi: http://dx.doi.org/10.2174/1570159x14666151208112754
37. Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst Rev. 2018 Jun 18;6(6):CD001190. doi: http://dx.doi.org/10.1002/14651858.CD001190.pub3
38. Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer’s diseas. Arch Pharm Res. 2013 Apr;36(4):375-99. doi: http://dx.doi.org/10.1007/s12272-013-0036-3
39. Mohsin NA, Ahmad M. Donepezil: A review of the recent structural modifications and their impact on anti-Alzheimer activity. Braz J Pharm Sci. 2020;56. doi: http://dx.doi.org/10.1590/s2175-97902019000418325
40. Petrov KA, Kharlamova AD, Nikolskii EE. Cholinesterases: a neurophysiologist's view. Geny Kletki. 2014;9(3):160-7. (In Russ.)
41. Maia MA, Sousa E. BACE-1 and γ-Secretase as Therapeutic Targets for Alzheimer’s Disease. Pharmaceuticals (Basel). 2019 Mar 19;12(1):41. doi: http://dx.doi.org/10.3390/ph12010041
42. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018 Jan;25(1):59-70. doi: http://dx.doi.org/10.1111/ene.13439
43. Blass BE. Bridged Piperidine Derivatives Useful as γSecretase Inhibitors for the Treatment of Alzheimer’s Disease. ACS Med Chem Lett. 2018 Dec 7;10(1):6-7. doi: http://dx.doi.org/10.1021/acsmedchemlett.8b00544
44. Laras Y, Pietrancosta N, Tomita T, Iwatsubo T, Kraus JL. Synthesis and biological activity of N-substituted spiro[benzoxazepine-piperidine] Aβ-peptide production inhibitors. J Enzyme Inhib Med Chem. 2008 Dec;23(6):996-1001. doi: http://dx.doi.org/10.1080/14756360701832706
45. Close J, Heidebrecht R, Hendrix J, Li C, Munoz B, Surdi L,a et al. Lead optimization of 4,4-biaryl piperidine amides as γ-secretase inhibitors. Bio Med Chem Letters. 2012;22(9):3203-7. doi: http://dx.doi.org/10.1016/j.bmcl.2012.03.038
46. Youssef KM, Fawzy IM, El-Subbagh HI. N-substituted-piperidines as Novel Anti-alzheimer Agents: Synthesis, antioxidant activity, and molecular docking study. F J Pharm Sci. 2018;4(1):1-7. doi: http://dx.doi.org/10.1016/j.fjps.2017.06.002
Information about authors:
Vasilyuk A.A. – postgraduate of the Chair of Pharmacology Named after Professor M.V. Korablev, Grodno State Medical University;
Kozlovsky V.I. – Doctor of Biological Sciences, associate professor, head of the Chair of Pharmacology Named after Professor M.V. Korablev, Grodno State Medical University.
Correspondence address: Republic of Belarus, 230005, Grodno, 4 Bolshaya Troitskaya str., Grodno State Medical University, Chair of Pharmacology Named after Professor M.V. Korablev. Е-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Anna A. Vasilyuk.