DOI: https://doi.org/10.22263/2312-4156.2022.2.15
Rzheussky S.E.
Silver nanoparticles in medicine
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus
Vestnik VGMU. 2022;21(2):15-24.
Abstract.
When writing this review, published data on the history of use, mechanism of action and the effectiveness of application of silver nanoparticles and preparations based on them in clinical practice were summarized and compared. This metal has been used in medical practice since ancient times, but statistical data on its effectiveness were obtained only at the end of the 19th century. Since then, it has become widely spread in the form of colloidal solutions, salts, and, in recent decades, nanoparticles. The interest to silver preparations is especially pronounced in connection with the spread of antibiotic-resistant microorganisms. Ions and nanoparticles attach to their cell wall, disrupt its functioning, destroy it, penetrate into the cell, where they bind to phosphorus and sulfur-containing molecules. Possessing such a non-specific mechanism of action, silver nanoparticles have a wide spectrum of antimicrobial and antifungal activity. According to the materials of the Cochrane Library, it can be concluded that silver nanoparticles possess clinically proven efficacy when used in surgery, dentistry, for manufacturing medical products that are used in surgery or transplantology.
Key words: silver nanoparticles, clinical efficacy, toxicity.
References
1. Lebedeva DD. Use of silver and gold nanoparticles in dentistry. Nauch Elektron Zhurn Meridian. 2019;(14):102-4. Avaiable from: https://www.elibrary.ru/item.asp?id=41518913. [Accessed 01th Apr 2022]. (In Russ.)
2. Melaiye A, Youngs WJ. Silver and its application as an antimicrobial agent. Expert Opin Ther Pat. 2005;15(2):125-30. doi: http://dx.doi.org/10.1517/13543776.15.2.125
3. Podkopaev DO, Shaburova LN, Balandin GV, Kraineva OV, Labutina NV, Suvorov OA, i dr. Comparative evaluation of the antimicrobial activity of silver nanoparticles. Ros Nanotekhnologii. 2013;8,(11-12):123-6. (In Russ.)
4. Rzheusskii SE, Kugach VV, Valueva MA. Economic aspects of application and antimicrobial activity of silver-containing drugs. Vestn Farmatsii. 2013;(2):25-30. (In Russ.)
5. Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals. 2013 Aug;26(4):609-21. doi: http://dx.doi.org/10.1007/s10534-013-9645-z
6. Kachanova OA, Fedosov SR, Malyshko VV, Basov AA, Arkhipenko MV, Chernobai KN. Antibacterial activity of some colloidal forms of nanosilver against non-fermenting Gram-negative bacteria. Sovremen Problemy Nauki Obrazovaniia. 2014;(2):215-22. (In Russ.)
7. Blagitko EM. On the feasibility of introducing silver nanopreparations as antibacterial antiviral agents in medical practice in the Russian Federation. V: SibUPK, Nac meksik un-t, NGMU, IHTTM SO RAN, NOC «Molekuljar dizajn i jekol bezopas tehnologii» pri NGU, NIJeM, NII KiJeL SO RAMN, i dr. Nanotehnologii i nanomaterialy dlja biologii i mediciny: nauch-prakt konf s mezhdunar uchastiem, 11–12 okt 2007 g: v 2 ch. Novosibirsk, RF; 2007. Ch 2. Р. 36-9. (In Russ.)
8. Gusev AI. Nanomaterials, nanostructures, nanotechnology Moscow, RF: Fizmatlit; 2005. 416 р. (In Russ.)
9. Petritckaia EN, Abaeva LF, Rogatkin DA, Litvinova KS, Bobrov MA. On the toxicity of silver nanoparticles during oral administration of colloidal solution. Al'm Klin Meditsiny. 2011;(25):9-12. (In Russ.)
10. The devil is not as frightening as his little one. Nanotehnologii. 2008;(3):9-12. (In Russ.)
11. Karpov S. Optical effects in metallic nanocolloids. Fotonika. 2012;(2):40-51. (In Russ.)
12. Rzheusskii SE. Validation of the spectrophotometric technique for quantitative determination of silver nanoparticles in aqueous solutions. Vestn Farmatsii. 2019;(1):21-5. (In Russ.)
13. PubMed: National Library of Medicine. Avaiable from: https://pubmed.ncbi.nlm.nih.gov/?term=Silver+nanoparticles. [Accessed 01th Apr 2022].
14. Afinogenov GE, Kopeikin VV, Panarin EF; Afinogenov GE, zaiavitel' i patentoobladatel'. Water-soluble silver-containing bactericidal composition and method of its production: pat 2128047 RU: MPK A61K31/79, A61K33/38. № 95119636/14; zaiavl 21.06.95; opubl 27.03.99. (In Russ.)
15. Gnetnev AM, Pozdniakova BIa, Liberzon RD; zajavitel' i patentoobladatel' Sarat nauch-issled in-t travmatologii i ortopedii. A way to treat purulent wounds: pat RU 2142279 C1: MPK A61K 33/38, A61N 7/00. № 95109614/14; zajavl 07.06.95; opubl 10.12.99. (In Russ.)
16. Behravan M, Panahi AH, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol. 2019 Mar;124:148-154. doi: http://dx.doi.org/10.1016/j.ijbiomac.2018.11.101
17. Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today. 2015 May;20(5):595-601. doi: http://dx.doi.org/10.1016/j.drudis.2014.11.014
18. Mafuné F, Kohno J, Takeda Y, Kondow T, Sawabe H. Formation and size control of sliver nanoparticles by laser ablation in aqueous solution. J Phys Chem B. 2000;104(39):9111-7.
19. Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3:135-40.
20. Masum MI, Siddiqa MM, Ali KA, Zhang Y, Abdallah Y, Ibrahim E, et al. Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown strip. Front Microbiol. 2019 Apr;10:820. doi: http://dx.doi.org/10.3389/fmicb.2019.00820
21. Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016 Sep;17(9):1534. doi: http://dx.doi.org/10.3390/ijms17091534
22. Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today. 2015 May;20(5):595-601. doi: http://dx.doi.org/10.1016/j.drudis.2014.11.014
23. Bapat RA, Chaubal TV, Joshi CP, Bapat PR, Choudhury H, Pandey M, et al. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C Mater Biol Appl. 2018 Oct;91:881-898. doi: http://dx.doi.org/10.1016/j.msec.2018.05.069
24. Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci. 2019 Jan;20(2):449. doi: http://dx.doi.org/10.3390/ijms20020449
25. Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials (Basel). 2013 Jun;6(6):2295-2350. doi: http://dx.doi.org/10.3390/ma6062295
26. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol. 2016 Nov;7:1831.
27. Ansari MA, Khan HM, Khan AA, Ahmad MK, Mahdi AA, Pal R, Cameotra SS. Interaction of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. J Basic Microbiol. 2014 Sep;54(9):905-15. doi: http://dx.doi.org/10.1002/jobm.201300457
28. Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine. 2018 Nov;13:8013-8024. doi: http://dx.doi.org/10.2147/IJN.S189295
29. Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed. 2012 Jul;2(7):574-80. doi: http://dx.doi.org/10.1016/S2221-1691(12)60100-2
30. Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine. 2012;7:483-96. doi: http://dx.doi.org/10.2147/IJN.S24793
31. Ramalingam B, Parandhaman T, Das SK. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces. 2016 Feb;8(7):4963-76. doi: http://dx.doi.org/10.1021/acsami.6b00161
32. Ivask A, Elbadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, et al. Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver. ACS Nano. 2014 Jan 28;8(1):374-86. doi: http://dx.doi.org/10.1021/nn4044047
33. Rajesh S, V. Dharanishanthi, Vinoth Kanna A. Antibacterial mechanism of biogenic silver nanoparticles of Lactobacillus acidophilus. J Exp Nanosci;2015:10(15):1143-52. doi: http://dx.doi.org/10.1080/17458080.2014.985750
34. Rinna A, Magdolenova Z, Hudecova A, Kruszewski M, Refsnes M, Dusinska M. Effect of silver nanoparticles on mitogen-activated protein kinases activation: role of reactive oxygen species and implication in DNA damage. Mutagenesis. 2015 Jan;30(1):59-66. doi: http://dx.doi.org/10.1093/mutage/geu057
35. López-Carballo G, Higueras L, Gavara R, Hernández-Muñoz P. Silver Ions Release from Antibacterial Chitosan Films Containing in Situ Generated Silver Nanoparticles. J Agric Food Chem. 2013 Jan;61(1):260-7. doi: http://dx.doi.org/10.1021/jf304006y
36. Ramkumar VS, Pugazhendhi A, Gopalakrishnan K, Sivagurunathan P, Saratale GD, Bao Dung TN, et al. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Rep (Amst). 2017 Feb;14:1-7. doi: http://dx.doi.org/10.1016/j.btre.2017.02.001
37. Tang S, Zheng J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv Healthc Mater. 2018 Jul;7(13):e1701503. doi: http://dx.doi.org/10.1002/adhm.201701503
38. Hembram KC, Kumar R, Kandha L, Parhi PK, Kundu CN, Bindhani BK. Therapeutic prospective of plant-induced silver nanoparticles: application as antimicrobial and anticancer agent. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S38-S51. doi: http://dx.doi.org/10.1080/21691401.2018.1489262
39. Rzheusskii SE, Dovnar AG, Kugach VV. Study of the antimicrobial activity of uviargol. Vestn VGMU. 2015;14(6):120-6. (In Russ.)
40. Tapalskii DV, Osipov VA, Sukhaia GN, Iarmolenko MA, Rogachev AA, Rogachev AV. Biocompatible composite antibacterial coatings to protect implants from microbial biofilms. Problemy Zdorov'ia Ekologii. 2013;(2):129-34. (In Russ.)
41. Tapalskii DV, Boitcova NIu, Osipov VA, Rogachev AA, Iarmolenko MA, Rogachev AV, i dr. New antibacterial coating based on a mixture of polyurethane and poly-l-lactide. Dokl Nats Akad Nauk Belarusi. 2013;57(4):89-95. (In Russ.)
42. Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine. 2018 Jun;13:3311-3327. doi: http://dx.doi.org/10.2147/IJN.S165125
43. Frolova IuV, Kirsh IA, Beznaeva OV, Pomogova DA, Tikhomirov AA. Creation of packaging polymeric materials with antimicrobial properties. Izv Vuzov Priklad Khimiia Biotekhnologiia. 2017;7(3):145-52. (In Russ.)
44. Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol. 2018;13(1):65-71.
45. Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog. 2018 Apr;117:68-72. doi: http://dx.doi.org/10.1016/j.micpath.2018.02.008
46. Sattori I, Makhmudov KB, Radzhabov U, Radzhabali M, Nazarov F. Historical aspects of the application of silver compounds (review). Dokl Tadzhik Akad S-Kh Nauk. 2018;(1):62-5. (In Russ.)
47. Jerger SE, Parekh U. Argyria. Avaiable from: https://www.ncbi.nlm.nih.gov/books/NBK563123/. [Accessed 01th Apr 2022].
48. Simon M, Buchanan JA. Argyria, an Unexpected Case of Skin Discoloration From Colloidal Silver Salt Ingestion. J Emerg Med. 2020 Aug;59(2):e39-e41. doi: http://dx.doi.org/10.1016/j.jemermed.2020.05.011
49. Smock KJ, Schmidt RL, Hadlock G, Stoddard G, Grainger DW, Munger MA. Assessment of orally dosed commercial silver nanoparticles on humanex vivoplatelet aggregation. Nanotoxicology. 2014 May;8(3):328-33. doi: http://dx.doi.org/10.3109/17435390.2013.788749
50. Munger MA, Radwanski P, Hadlock GC, Stoddard G, Shaaban A, Falconer J, et al. In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine. 2014 Jan;10(1):1-9. doi: http://dx.doi.org/10.1016/j.nano.2013.06.010
51. Munger MA, Hadlock G, Stoddard G, Slawson MH, Wilkins DG, Cox N, et al. Assessing orally bioavailable commercial silver nanoparticle product on human cytochrome P450 enzyme activity. Nanotoxicology. 2015 May;9(4):474-81. doi: http://dx.doi.org/10.3109/17435390.2014.948092
52. Miller CN, Newall N, Kapp SE, Lewin G, Karimi L, Carville K, et al. A randomized-controlled trial comparing cadexomer iodine and nanocrystalline silver on the healing of leg ulcers. Wound Repair Regen. 2010 Jul-Aug;18(4):359-67. doi: http://dx.doi.org/10.1111/j.1524-475X.2010.00603.x
53. Soriano JV, Bonmati AN. Treatment of chronic wounds infected by the application of silver dressings nanocrystalline combined with dressings hydrocellular. Rev Enferm. 2010 Oct;33(10):6-14.
54. Li X, Huang Y, Peng Y, Liao Z, Zhang G, Liu Q, et al. Multi-center clinical study of acticoat (nanocrystalline silver dressing) for the management of residual burn wounds. Zhonghua Shao Shang Za Zhi. 2006 Feb;22(1):15-8.
55. Erring M, Gaba S, Mohsina S, Tripathy S, Sharma RK. Comparison of efficacy of silver-nanoparticle gel, nano-silver-foam and collagen dressings in treatment of partial thickness burn wounds. Burns. 2019 Dec;45(8):1888-1894. doi: http://dx.doi.org/10.1016/j.burns.2019.07.019
56. Balzarro M, Rubilotta E, Mancini V, Pastore A, Soldano A, Trabacchin N, et al. Early and late efficacy on wound healing of silver nanoparticles gel (Peonil®) in males underwent circumcision. J Urol. 2019 Oct;18(9 suppl):e3320.
57. Boroumand Z, Golmakani N, Mazloum SR, Dadgar S, Golmohamadzadeh S. The effect of spray silver nanoparticles (Nivasha) on intensity of cesarean wound pain; A randomized clinical trial. Iran J Obstet Gynecol Infertil. 2018;21(9):83-92. doi: http://dx.doi.org/10.22038/ijogi.2018.12138
58. Abbasy FZ, Salsabyl I, Olfat S, Geraldine A. Intra-canal medication containing silver nanoparticle versus calcium hydroxide in reducing postoperative pain: A randomized clinical trial. Avaiable from: https://f1000research.com/articles/7-1949/v1/. [Accessed 01th Apr 2022].
59. Jurairattanaporn N, Chalermchai T, Ophaswongse S, Udompataikul M. Comparative Trial of Silver Nanoparticle Gel and 1% Clindamycin Gel when Use in Combination with 2.5% Benzoyl Peroxide in Patients with Moderate Acne Vulgaris. J Med Assoc Thai. 2017 Jan;100(1):78-85.
60. Freire PLL, Albuquerque AJR, Sampaio FC, Galembeck A, Flores MAP, Stamford TCM, et al. AgNPs: The New Allies Against S. Mutans Biofilm - A Pilot Clinical Trial and Microbiological Assay. Braz Dent J. 2017 Jul-Aug;28(4):417-422. doi: http://dx.doi.org/10.1590/0103-6440201600994
61. Baygin O, Tuzuner T, Yilmaz N, Simge A. Short-term antibacterial efficacy of a new silver nanoparticle-containing toothbrush. J Pak Med Assoc. 2017 May;67(5):818-819.
62. Lackner P, Beer R, Broessner G, Helbok R, Galiano K, Pleifer C, et al. Efficacy of Silver Nanoparticles-Impregnated External Ventricular Drain Catheters in Patients with Acute Occlusive Hydrocephalus. Neurocrit Care. 2008;8(3):360-5. doi: http://dx.doi.org/10.1007/s12028-008-9071-1
63. Tokmaji G, Vermeulen H, Müller MCA, Kwakman PHS, Schultz MJ, Zaat SAJ. Silver-coated endotracheal tubes (ETTs) for prevention of ventilator-associated pneumonia in critically ill people. In: Cochrane. Trusted evidence. Informed decisions. Better health. Avaiable from: https://www.cochrane.org/CD009201/EMERG_silver-coated-endotracheal-tubes-etts-prevention-ventilator-associated-pneumonia-critically-ill. [Accessed 01th Apr 2022].
64. Farhadian N, Mashoof RU, Khanizadeh S, Ghaderi E, Farhadian M, Miresmaeili A. Streptococcus mutans counts in patients wearing removable retainers with silver nanoparticles vs those wearing conventional retainers: A randomized clinical trial. Am J Orthod Dentofacial Orthop. 2016 Feb;149(2):155-60. doi: http://dx.doi.org/10.1016/j.ajodo.2015.07.031
65. Fries CA, Ayalew Y, Penn-Barwell JG, Porter K, Jeffery SLA, Midwinter MJ. Prospective randomised controlled trial of nanocrystalline silver dressing versus plain gauze as the initial post-debridement management of military wounds on wound microbiology and healing. Injury. 2014 Jul;45(7):1111-6. doi: http://dx.doi.org/10.1016/j.injury.2013.12.005
66. Vermeulen H, van Hattem JM, Storm-Versloot MN, Ubbink DT, Westerbos SJ. Topical silver for treating infected wounds. In: Cochrane. Trusted evidence. Informed decisions. Better health. Avaiable from: https://www.cochrane.org/CD005486/WOUNDS_topical-silver-for-treating-infected-wounds. [Accessed 01th Apr 2022].
67. Antonelli M, De Pascale G, Ranieri VM, Pelaia P, Tufano R, Piazza O, et al. Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (AgTive®) vs conventional catheters in intensive care unit patients. J Hosp Infect. 2012 Oct;82(2):101-7. doi: http://dx.doi.org/10.1016/j.jhin.2012.07.010
Information about authors:
Rzheussky S.E. – Candidate of Pharmaceutical Sciences, associate professor of the Chair of Management & Marketing of Pharmacy, Vitebsk State Order of Peoples’ Friendship Medical University.
Correspondence address: Republic of Belarus, 210009, Vitebsk, 27 Frunze ave., Vitebsk State Order of Peoples’ Friendship Medical University, Chair of Management & Marketing of Pharmacy. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Sergey E. Rzheussky.