Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2022.3.86

P.D. Dziameshka
The results of the application of extracranial stereotaxic method in renal cell carcinoma
N.N. Alexandrov National Cancer Centre of Belarus, Minsk, Republic of Belarus

Vestnik VGMU. 2022;21(3):86-93.

Abstract.
Objectives. To evaluate the survival rate of patients with stage I renal cell carcinoma (RCC) treated with stereotaxic ablation body radiotherapy (SABR).
Material and methods. A total included 20 patients treated with SABR at N.N. Alexandrov National Cancer Centre of Belarus during the period from 2018 to 2021. The inclusion criteria were: stage I kidney cancer, the presence of contraindications to surgical treatment, or refusal of surgical treatment, as well as a high risk of postoperative complications. The studies included patients with tumors ≤5 cm in size. The treatment was carried out on the TrueBeam STx device (Varian Medical Systems, USA). The prescribed dose was 48 Gy in 4 fractions, the biologically effective dose was BED α/β 3 Gy=240 Gy, BED α/β 10 Gy=105 Gy. The endpoints of the study were the local progression survival (LPS), cancer-specific survival (CSS), and overall survival (OS).
Results. Local control of the disease was achieved in all patients (in 1 of them in the form of complete regression, in 16 – in the form of stabilization of the disease, in 3 cases – partial regression of the tumor). The frequency of local tumor progression in patients with localized kidney cancer (LKC) during the observation period was 0%, 3-year LPS was 100%. At the same time, 1 patient had progression of the disease with the development of distant metastases, the metastatic-free survival was 93.7%. During the median follow-up period of 20.1 months, 3 patients died, all because of causes not related to kidney cancer. The 3-year adjusted survival rate was 100% and overall survival was 78.3%.
Conclusions. SABR for stage I kidney cancer is characterized by satisfactory immediate and long-term results and can be used in patients with contraindications to surgical treatment, or refusal of surgical treatment, as well as in those with a high risk of postoperative complications.
Keywords: renal cell carcinoma, stereotactic radiotherapy, overall survival.

Funding: The research was performed within the frames of the task 03.07 “To elaborate and implement a method of treating patients suffering from primary and metastatic kidney cancer with the use of stereotaxic method” of the State Research Program (GPNI) “Scientific and technical quality assuarance and accessibility of medical service” of the subprogram “Malignant tumors”.

References

1. Bianchi L, Chessa F, Piazza P, Ercolino A, Mottaran A, Recenti D, et al. Percutaneousablation or minimally invasive partialnephrectomy for cT1a renal masses? A propensity score-matched analysis. Int J Urol. 2022 Mar;29(3):222-228. doi: http://doi.org/10.1111/iju.14758
2. Rouprêt M, Babjuk M, Burger M, Capoun O, Cohen D, Compérat EM, et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2020 Update. Eur Urol. 2021 Jan;79(1):62-79. doi: http://doi.org/10.1016/j.eururo.2020.05.042
3. Demeshko PD, Polyakov SL, Stepanovich EA, Shecherbachenya AG, Minailo II. The significance of stereotaxic radiotherapy in renal-cell carcinoma. Oncol Zhurn. 2019;13(1):110-6. (In Russ.)
4. Schoenhals JE, Mohamad O, Christie A, Zhang Y, Li D, Singla N, et al. Stereotactic ablative radiation therapy for oligoprogressive renal cellcarcinoma. Adv Radiat Oncol. 2021 May. 26;6(5):100692. doi: http://doi.org/10.1016/j.adro.2021.100692
5. Kothari G, Louie AV, Pryor D, Vela I, Lo SS, Teh BS, et al. Stereotactic body radiotherapy for primary renal cell carcinoma and adrenal metastases. Chin Clin Oncol. 2017 Sep;6(Suppl 2):S17. doi: http://doi.org/10.21037/cco.2017.06.30
6. Deschavanne PJ, Fertil B. A review of human cell radiosensitivity in vitro. Int J Radiat Oncol Biol Phys. 1996 Jan;34(1):251-66. doi: http://doi.org/10.1016/0360-3016(95)02029-2.
7. Ning S, Trisler K, Wessels BW, Knox SJ. Radiobiologic studies of radioimmunotherapy and external beam radiotherapy in Vitro and in Vivo in human renal cell carcinoma xenografts. Cancer. 1997 Dec;80(12 Suppl):2519-28. doi: http://doi.org/10.1002/(sici)1097-0142(19971215)80:12+<2519::aid-cncr26>3.3.co;2-t
8. De Meerleer G, Khoo V, Escudier B, Joniau S, Bossi A, Ost P, et al. Radiotherapy for renal-cell carcinoma. Lancet Oncol. 2014 Apr;15(4):e170-7. doi: http://doi.org/10.1016/S1470-2045(13)70569-2
9. Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis. Oncogene. 2003 Sep;22(33):5897-906. doi: http://doi.org/10.1038/sj.onc.1206702
10. Marathe S, Schissel SL, Yellin MJ, Beatini N, Mintzer R, Williams KJ, et al. Human vascular endothelial cells are a rich and regulatable source of secretorysphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling. J Biol Chem. 1998 Feb;273(7):4081-8. doi: http://doi.org/10.1074/jbc.273.7.4081
11. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz- Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003 May;300(5622):1155-9. doi: http://doi.org/10.1126/science.1082504
12. Sathishkumar S, Boyanovsky B, Karakashian AA, Rozenova K, Giltiay NV, Kudrimoti M, et al. Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment: implications for endothelial apoptosis. Cancer Biol Ther. 2005 Sep;4(9):979-86. doi: http://doi.org/10.4161/cbt.4.9.1915
13. Wersall PJ, Blomgren H, Pisa P, Lax I, Kalkner KM, Svedman C. Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol. 2006;45(4):493-7. doi: http://doi.org/10.1080/02841860600604611
14. Craig DJ, Nanavaty NS, Devanaboyina M, Stanbery L, Hamouda D, Edelman G, et al. The abscopal effect of radiation therapy. Future Oncol. 2021 May;17(13):1683-94. doi: http://doi.org/10.2217/fon-2020-0994
15. Janopaul-Naylor JR, Shen Y, Qian DC, Buchwald ZS. The abscopal effect: a review of pre-clinical and clinical advances. Int J Mol Sci. 2021 Oct;22(20):11061. doi: http://doi.org/10.3390/ijms222011061
16. Kodet O, Němejcova K, Strnadová K, Havlínová A, Dundr P, Krajsová I, et al. The abscopal effect in the era of checkpoint inhibitors. Int J Mol Sci. 2021 Jul;22(13):7204. doi: http://doi.org/10.3390/ijms22137204
17. Pevzner AM, Tsyganov MM, Ibragimova MK, Litvyakov NV. Abscopal effect in the radio and immunotherapy. Radiat Oncol J. 2021 Dec;39(4):247-53. doi: http://doi.org/10.3857/roj.2021.00115
18. Staehler M, Bader M, Schlenker B, Casuscelli J, Karl A, Roosen A, et al. Single fraction radiosurgery for the treatment of renal tumors. J Urol. 2015 Mar;193(3):771-5. doi: http://doi.org/10.1016/j.juro.2014.08.044
19. McBride SM, Wagner AA, Kaplan ID. A phase 1 dose-escalation study of robotic radiosurgery in inoperable primary renal cell carcinoma. Int J Radiat Oncol Biol Phys. 2013 Oct;87(2 Suppl):S84. doi: http://doi.org/10.1016/j.ijrobp.2013.06.218
20. Svedman C, Sandström P, Pisa P, Blomgren H, Lax I, Kälkner KM, et al. A prospective phase II trial of using extracranial stereotactic radiotherapy in primary and metastatic renal cell carcinoma. Acta Oncol. 2006;45(7):870-5. doi: http://doi.org/10.1080/02841860600954875

Information about authors:
P.D. Dziameshka – Doctor of Medical Sciences, associate professor, chief researcher of the laboratory of radiation therapy, N.N. Alexandrov National Cancer Centre of Belarus, https://orcid.org/0000-0001-8629-2830
E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Pavel D. Dziameshka.

Поиск по сайту