Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2022.4.79

D.V. Turluk1, V.A. Yanushko2, V.Y. Khryshchanovich1, S.A. Alekseev1, O.F. Kardash1, T.V. Svinkovskaya3, N.A. Pinchuk3, M.A. Kruglikova3, E.G. Kordzakhia4
Neuropsychological testing as a screening method for diagnosing cognitive-affective cerebellar syndrome in patients with vertebrobasilar insufficiency
1Belarusian State Medical University, Minsk, Republic of Belarus
2Republican Scientific and Practical Centre «Cardiology», Minsk, Republic of Belarus
3Republican Scientific and Practical Centre of Neurology and Neurosurgery, Minsk, Republic of Belarus
4The 5th City Clinical Hospital, Minsk, Republic of Belarus

Vestnik VGMU. 2022;21(4):79-88.

Abstract.
The study of cognitive deficits in patients with cerebellar pathology led in 1998 to the discovery by J. Schmahmann and J. Sherman of the cognitive-affective cerebellar syndrome (CACS). However, the question of the presence of CACS in patients with circulatory disorders in the posterior cranial fossa with clinical manifestations of cerebellar dysfunction remains unclear.
Objectives. To assess the presence and severity of CACS in patients with chronic vertebrobasilar insufficiency (VBI) caused by extravasal compression of the vertebral arteries in the bone canal.
Material and methods. The study included 114 patients with systemic and non-systemic dizziness. Patients were divided into groups. Тhe first group consisted of 61 patients with severe cognitive deficits, the second group was composed of 53 patients with moderate cognitive deficits, the third group consisted of 20 healthy people. The average age was 48.1+0.8 years (43% – males). The tests were conducted according to the Tinetti scales and the original VBI scale. To assess CACS, testing was carried out using the Folstein, Luria, Bourdon tests.
Results. Patients with VBI experienced attention deficits, emotional control deficits, had autism spectrum symptoms, psychotic spectrum symptoms, and social skills deficits. The degree of cognitive deficit manifestation in the groups of patients was found to depend on the severity of VBI symptoms. The direct correlation between the degree of cognitive impairments and the degree of clinical manifestations of VBI made up 0.68 (r).
Conclusions. Circulatory insufficiency in the posterior cranial fossa is accompanied by a significant decrease in cognitive function against the background of ataxia and other symptoms specific for cerebellar damage, verified by the Tinetti scales and the original VBI scale.
Keywords: Schmahmann’s syndrome, cerebellum, vertebrobasilar insufficiency, vertebral arteries, carotid arteries.

References

1. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998 Apr;121 ( Pt 4):561-79. doi: http://dx.doi.org/10.1093/brain/121.4.561
2. Luria A. Human brain and psychological processes. New York: Harper & Row; 1966. 587 p.
3. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018 Jan;141(1):248-270. doi: http://dx.doi.org/10.1093/brain/awx317
4. Manto M, Mariën P. Schmahmann's syndrome - identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias. 2015 Feb;2:2. doi: http://dx.doi.org/10.1186/s40673-015-0023-1
5. Ahmadian N, van Baarsen K, van Zandvoort M, Robe PA. The Cerebellar Cognitive Affective Syndrome-a Meta-analysis. Cerebellum. 2019 Oct;18(5):941-950. doi: http://dx.doi.org/10.1007/s12311-019-01060-2
6. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011 Nov;106(5):2322-45. doi: http://dx.doi.org/10.1152/jn.00339.2011
7. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189-98. doi: http://dx.doi.org/10.1016/0022-3956(75)90026-6
8. Catsman-Berrevoets CE, Aarsen FK. The spectrum of neurobehavioural deficits in the Posterior Fossa Syndrome in children after cerebellar tumour surgery. Cortex. 2010 Jul-Aug;46(7):933-46. doi: http://dx.doi.org/10.1016/j.cortex.2009.10.007
9. Reed-Berendt R, Phillips B, Picton S, Chumas P, Warren D, Livingston JH, et al. Cause and outcome of cerebellar mutism: evidence from a systematic review. Childs Nerv Syst. 2014 Mar;30(3):375-85. doi: http://dx.doi.org/10.1007/s00381-014-2356-0
10. Tinetti ME, Williams TF, Mayewski R. Fall Risk Index for elderly patients based on number of chronic disabilities. Am J Med. 1986 Mar;80(3):429-34. doi: http://dx.doi.org/10.1016/0002-9343(86)90717-5
11. Wallesch CW, Horn A. Long-term effects of cerebellar pathology on cognitive functions. Brain Cogn. 1990 Sep;14(1):19-25. doi: http://dx.doi.org/10.1016/0278-2626(90)90057-u
12. Robertson DA, Coen R, King-Kallimanis BL, Kenny RA. Montreal Cognitive Assessment (MoCA): Gender and education effects. Eur Geriatric Med. 2013;4(Suppl 1):S199. doi: http://dx.doi.org/10.1016/j.eurger.2013.07.664
13. Trzepacz PT, Hochstetler H, Wang S, Walker B, Saykin AJ. Relationship between the Montreal Cognitive Assessment and Mini-mental State Examination for assessment of mild cognitive impairment in older adults. BMC Geriatr. 2015 Sep;15:107. doi: http://dx.doi.org/10.1186/s12877-015-0103-3
14. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J Am Geriatr Soc. 2005 Apr;53(4):695-9. doi: http://dx.doi.org/10.1111/j.1532-5415.2005.53221.x
15. Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997 Dec;17(24):9675-85. doi: http://dx.doi.org/10.1523/JNEUROSCI.17-24-09675.1997
16. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009 Jul;29(26):8586-94. doi: http://dx.doi.org/10.1523/JNEUROSCI.1868-09.2009
17. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003 Sep;23(23):8432-44. doi: http://dx.doi.org/10.1523/JNEUROSCI.23-23-08432.2003
18. Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010 Sep;20(3):271-9. doi: http://dx.doi.org/10.1007/s11065-010-9137-7
19. Otto A. Ein Fall von Verkümmerung des Kleinhirns. Arch Psychiat Nervenkr. 1873;(4):730-46. doi: http://dx.doi.org/10.1007/BF02155957
20. Tomlinson SP, Davis NJ, Bracewell RM. Brain stimulation studies of non-motor cerebellar function: a systematic review. Neurosci Biobehav Rev. 2013 Jun;37(5):766-89. doi: http://dx.doi.org/10.1016/j.neubiorev.2013.03.001
21. Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, et al. Cerebellar transcranial direct current stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist. 2016 Feb;22(1):83-97. doi: http://dx.doi.org/10.1177/1073858414559409
22. Janssen G, Messing-Jünger AM, Engelbrecht V, Göbel U, Bock WJ, Lenard HG. Cerebellar mutism syndrome. Klin Padiatr. 1998 Jul-Aug;210(4):243-7. doi: http://dx.doi.org/10.1055/s-2008-1043886
23. Mariën P, De Smet HJ, Wijgerde E, Verhoeven J, Crols R, De Deyn PP. Posterior fossa syndrome in adults: report of a new case and summary of the literature. Cortex. 2013 Jan;49(1):284-300. doi: http://dx.doi.org/10.1016/j.cortex.2011.06.018
24. Schmahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons: implications for the cerebellar contribution to higher function. Neurosci Lett. 1995 Oct7;199(3):175-8. doi: http://dx.doi.org/10.1016/0304-3940(95)12056-a
25. Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997 Jan;17(1):438-58. doi: http://dx.doi.org/10.1523/JNEUROSCI.17-01-00438.1997
26. Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31-60. doi: http://dx.doi.org/10.1016/s0074-7742(08)60346-3
27. O'Reilly RC, Herd SA, Pauli WM. Computational models of cognitive control. Curr Opin Neurobiol. 2010 Apr;20(2):257-61. doi: http://dx.doi.org/10.1016/j.conb.2010.01.008

Information about authors:
D.V. Turluk – doctoral student of the Chair of General Surgery, Belarusian State Medical University,
E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Dmitry V. Turluk;
V.A. Yanushko – Doctor of Medical Sciences, professor, chief researcher of the Laboratory of Vascular Surgery, RSPC “Cardiology”;
V.Y. Khryshchanovich – Doctor of Medical Sciences, professor of the Chair of General Surgery, Belarusian State Medical University;
S.A. Alekseev – Doctor of Medical Sciences, professor of the Chair of General Surgery, Belarusian State Medical University;
O.F. Kardash – Candidate of Medical Sciences, associate professor of the Chair of Clinical Pharmacology, Belarusian State Medical University;
T.V. Svinkovskaya – doctor of functional diagnostics, Republican Scientific and Practical Centre of Neurology and Neurosurgery;
N.A. Pinchuk – neurologist, Republican Scientific and Practical Centre of Neurology and Neurosurgery;
M.A. Kruglikova – neurologist, Republican Scientific and Practical Centre of Neurology and Neurosurgery;
E.G. Kordzakhia – neonatologist, the 5th City Clinical Hospital.

Поиск по сайту