DOI: https://doi.org/10.22263/2312-4156.2022.5.9
M.A. Miadzelets, V.A. Miadzelets, A.D. Miadzelets
Morphoneuroimmunoendocrine relationships in local (tissue) homeostasis of the skin epidermis and its barrier-protective functions. Part 2
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus
Vestnik VGMU. 2022;21(5):9-21.
Abstract.
The review continues the series of planned articles on the morphoneuroimmunoendocrine system of the skin (MNIESS). In this review the origin, structure and functions of epidermal cells: keratinocytes, dendritic Langerhans cells, dendritic gamma/delta T-lymphocytes, Merkel cells are given further consideration to. The mechanisms of keratinization and formation of keratinosomes, formation of the epidermal lipid barrier are described in detail. The role of ceramides, fatty acids and cholesterol in the creation process of the epidermal lipid barrier, the horny envelope and proteins involved in its formation is also considered. The causes, mechanisms of exfoliation and its significance in the barrier-protective function of the skin are discussed. The innervation of the skin (nervous component of MNIESS) is described in detail. The ways of penetration of the liquid into the epidermis are considered. The review continues the position of exploring the multifunctionality of the operation of all epidermal cells with their closest relationship. This multifunctionality was the main reason for the birth of such a branch of medical knowledge as morphoneuroimmunoendocrinology of the skin.
Keywords: skin, local skin homeostasis, neuroimmunoendocrine relationships in the local homeostasis of the epidermis.
References
1. Akimov VG, Albanova VI, Bogatyreva II, Getling ZM, Mordovtsev VN, Persina IS, i dr; Mordovtsev VN, Tsvetkova GM, red. Skin pathology: v 2 t. Moscow, RF: Meditsina; 1992. T 1: General skin pathology. 334 р. (In Russ.)
2. Smirnova I, Kvetnoy IM, Knyazkin IV, Danilov SI. Neuroimmunoendocrinology of skin and molecular markers of skin aging. St. Petersburg, RF: Dean; 2005. 288 р. (In Russ.)
3. Hunger RE, Sieling PA, Ochoa MT, Sugaya M, Burdick AE, Rea TH, et al. Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest. 2004 Mar;113(5):701-8. doi: http://dx.doi.org/10.1172/JCI19655
4. Sokolov VE, Skurat LN, Stepanova LV, Sumina EB, Shayuadash SA. Guidelines for the Study of Mammalian Skin. Moscow, RF: Nauka; 1988. 280 р.
5. Yarilin AA. Skin and immune system. Kosmetika Meditsina. 2021;(2):5-13. (In Russ.)
6. Birbeck MS, Breathnach AS, Everal JD. An electron microscope study of basal melanocytes and high-level clear cells (Langerhans cells) in vitiligo. J Invest Dermatol. 1961;37(1):51-64. doi: http://dx.doi.org/10.1038/jid.1961.80
7. Grafova GYa. Epidermal cytoarchitectonics and epidermal proliferative units. Arkh Anatomii. 1982;82(4):73-85. (In Russ.)
8. Staniek V, Misery L, Dezutter-Dambuyant C, Claudy A, Schmitt D. Expression of neuropeptides on human epidermal Langerhans cells. Adv Exp Med Biol. 1995;378:147-50. doi: http://dx.doi.org/10.1007/978-1-4615-1971-3_32
9. Torii H, Tamaki K, Granstein RD. The effect of neuropeptides/hormones of Langerhans cells. J Dermatol Sci. 1998 May;20(1):21-8. doi: http://dx.doi.org/10.1016/s0923-1811(99)00004-3
10. Misery L, Gaudillère A, Claudy A, Schmitt D. Expression of somatostatin on Langerhans cells. Adv Exp Med Biol. 1995;378:109-10. doi: http://dx.doi.org/10.1007/978-1-4615-1971-3_23.
11. Misery L. Neuro-immuno-cutaneous system (NICS). Pathol Biol (Paris). 1996 Dec;44(10):867-74.
12. Seiffert K, Hosoi J, Torii H, Ozawa H, Ding W, Campton K, et al. Catecholamines ingibit the antigen-presenting capability of epidermal Langerhans cells. J Immunol. 2002 Jun;168(12):6128-35. doi: http://dx.doi.org/10.4049/jimmunol.168.12.6128
13. Lambert RW, Campton K, Ding W, Ozawa H, Granstein RD. Langerhans cell expression of neuropeptide Y and YY. Neuropeptides. 2002 Aug;36(4):246-51. doi: http://dx.doi.org/10.1016/s0143-4179(02)00020-3
14. Luger TA, Paus R, Slominski A, Lipton J. Cutaneous neuromodulation: the proopiomelanocortin system. Ann N Y Acad Sci. 1999 Oct;885:xi-xiv. doi: http://dx.doi.org/10.1111/j.1749-6632.1999.tb08661.x
15. Narisawa Y, Hashimoto K, Kohda H. Immunohistochemical demonstration of the expression of neurofilament proteins in Merkel cells. Acta Derm Venereol. 1994 Nov;74(6):441-3. doi: http://dx.doi.org/10.2340/0001555574441443
16. Halata Z, Grim M, Bauman KI. Friedrich Sigmund Merkel and his "Merkel cell", morphology, development, and physiology: review and new results. Anat Rec A Discov Mol Cell Evol Biol. 2003 Mar;271(1):225-39. doi: http://dx.doi.org/10.1002/ar.a.10029
17. Tacyibana T, Nawa T. Recent progress in studies on Merkel cell biology. Anat Sci Int. 2002 Mar;77(1):26-33. doi: http://dx.doi.org/10.1046/j.0022-7722.2002.00008.x
18. Girardi M, Lewis J, Glusac E, Filler RB, Geng L, Hayday AC, et asl. Resident skin-specificngammadelta T cells provide local, nonredundant regulation of cutaneus inflammation. J Exp Med. 2002 Apr;195(7):855-67. doi: http://dx.doi.org/10.1084/jem.20012000
19. Lappin MB, Kimber I, Narval M. The role of dendritic cells in cutaneous immunity. Arch Dermatol Res. 1996 Mar;288(3):109-21. doi: http://dx.doi.org/10.1007/BF02505819
20. Lahn M, Kalataradi H, Mittelstadt P, Pflum E, Vollmer M, Cady C, et al. Early preferential stimulation of gammadelta T cells by TNF alpha. J Immunol. 1998 Jun;160(11):5221-30.
21. Odland GF, Holbrook K. The lamellar granules of epidermis. Curr Probl Dermatol. 1981;9:29-49. doi: http://dx.doi.org/10.1159/000403343
22. Sobolevskaya IS, Myadelets OD, Ostrovskaya OB. Effect of dark deprivation on the morphology of lamellar bodies and other cellular components of epidermal keratinocytes. Vestsі Nats Akad Navuk Belarusі Ser Med Navuk. 2021;18(1):80-8. (In Russ.) doi: http://dx.doi.org/10.29235/1814-6023-2021-18-1-80-88
23. Ernandes EI, Margolina A, Petrukhina A. Skin lipid barrier and cosmetics 2-e izd. Moscow, RF: Kafedra; 2003. 339 р. (In Russ.)
24. Gutowska-Owsiak D, de La Serna JB, Fritzsche M, Naeem A, Podobas EI, Leeming M, et al. Orchestrated control of filaggrin-keratin scaffolds underpins cornification. Cell Death Dis. 2018;9(4):412-22.
25. Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol. 2005 Apr;6(4):328-40. doi: http://dx.doi.org/10.1038/nrm1619
26. Cha HJ, He C, Zhao H, Dong Y, An I-S, An S. Intercellular and intracellular functions of ceramides and their metabolites in skin (review). Int J Mol Med. 2016 Jul;38(1):16-22. doi: http://dx.doi.org/10.3892/ijmm.2016.2600
27. Garidel P, Fölting B, Schaller I, Kerth A. The microstructure of the stratum corneum lipid barrier: mid-infrared spectroscopic studies of hydrated ceramide: palmitic acid:cholesterol model systems. Biophys Chem. 2010 Aug;150(1-3):144-56. doi: http://dx.doi.org/10.1016/j.bpc.2010.03.008
28. Lee SH, Jeong SK, Ahn SK. An update of the defensive barrier function of skin. Yonsei Med J. 2006 Jun;47(3):293-306. doi: http://dx.doi.org/10.3349/ymj.2006.47.3.293
29. van Smeden J, Janssens M, Kaye ECJ, Caspers PJ, Lavrijsen AP, Vreeken RJ, et al. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Exp Dermatol. 2014 Jan;23(1):45-52. doi: http://dx.doi.org/10.1111/exd.12293
Information about authors:
M.A. Miadzelets – Candidate of Medical Sciences, associate professor of the Chair of Dermatovenerology & Cosmetology, Vitebsk State Order of Peoples’ Friendship Medical University,
E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Maryiana A. Miadzelets;
V.A. Miadzelets – Candidate of Medical Sciences, associate professor of the Chair of Dermatovenerology & Cosmetology, Vitebsk State Order of Peoples’ Friendship Medical University;
A.D. Miadzelets – Doctor of Medical Sciences, professor, head of the Chair of Histology, Cytology & Embryology, Vitebsk State Order of Peoples’ Friendship Medical University.