Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2023.2.18

H.A. Zhernasechanka1,2, Y.I. Isaikina1, E.G. Liakh1
Main problems and ways of development of cellular technologies based on mesenchymal stem cells for cartilage tissue restoration
1Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Republic of Belarus
2Belarusian State Medical University, Minsk, Republic of Belarus

Vestnik VGMU. 2023;22(2):18-26.

Abstract.
Due to the restricted capacity of resident chondrocytes to regenerate the injury of cartilage tissue, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Thanks to their properties mesenchymal stem cells (MSCs) represent a promising resource for cellular biotechnologies. The better understanding of the mechanisms of articular cartilage repair can expand the possibilities of using MSCs in regenerative medicine. In this review, we have considered the possible ways of cartilage restoration by the use of MSCs. We have analyzed the possibility of reducing hypertrophy in MSCs after differentiation in vitro and enhancing functional properties of engineered cartilage by creating zonally-tailored structures. We also have discussed and compared the characteristics of MSCs obtained from different sources and the necessity of cellular induction before the introduction.
Keywords: mesenchymal stem cells, chondrogenesis, cell biotechnologies.

References

1. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970 Oct;3(4):393-403. doi: http://dx.doi.org/10.1111/j.1365-2184.1970.tb00347.x
2. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991 Sep;9(5):641-50. doi: http://dx.doi.org/10.1002/jor.1100090504
3. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7. doi: http://dx.doi.org/10.1080/14653240600855905
4. Zhuang W-Z, Lin Y-H, Su L-J, Wu M-S, Jeng H-Y, Chang H-C, et al. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci. 2021 Apr 14;28(1):28. doi: http://dx.doi.org/10.1186/s12929-021-00725-7
5. Busser H, Najar M, Raicevic G, Pieters K, Velez Pombo R, Philippart P, et al. Isolation and characterization of human mesenchymal stromal cell subpopulations: comparison of bone marrow and adipose tissue. Stem Cells Dev. 2015 Sep;24(18):2142-57. doi: http://dx.doi.org/10.1089/scd.2015.0172
6. Robert AW, Marcon BH, Dallagiovanna B, Shigunov P. Adipogenesis, osteogenesis, and chondrogenesis of human mesenchymal stem/stromal cells: a comparative transcriptome approach. Front Cell Dev Biol. 2020 Jul;8:561. doi: http://dx.doi.org/10.3389/fcell.2020.00561
7. Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C. Articular cartilage: from formation to tissue engineering. Biomater Sci. 2016 May;4(5):734-67. doi: http://dx.doi.org/10.1039/c6bm00068a
8. Zhong L, Huang X, Karperien M, Post JN. The regulatory role of signaling crosstalk in hypertrophy of mscs and human articular chondrocytes. Int J Mol Sci. 2015 Aug;16(8):19225-47. doi: http://dx.doi.org/10.3390/ijms160819225
9. Augustyniak E, Trzeciak T, Richter M, Kaczmarczyk J, Suchorska W. The role of growth factors in stem cell-directed chondrogenesis: a real hope for damaged cartilage regeneration. Int Orthop. 2015 May;39(5):995-1003. doi: http://dx.doi.org/10.1007/s00264-014-2619-0
10. Quintana LS, zur Nieden NI, Semino CE. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. Tissue Eng Part B Rev. 2009 Mar;15(1):29-41. doi: http://dx.doi.org/10.1089/ten.teb.2008.0329
11. Hidaka C, Goldring MB. Regulatory mechanisms of chondrogenesis and implications for understanding articular cartilage homeostasis. Current Rheumatol Rev. 2008;4(3):136-47. doi: http://dx.doi.org/10.2174/157339708785133541
12. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998 Jan;238(1):265-72. doi: http://dx.doi.org/10.1006/excr.1997.3858
13. Park YB, Ha CW, Kim JA, Han WJ, Rhim JH, Lee HJ, et al. Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthritis Cartilage. 2017 Apr;25(4):570-80. doi: http://dx.doi.org/10.1016/j.joca.2016.10.012
14. Caplan AI. MSCs: the sentinel and safe-guards of injury. J Cell Physiol. 2016 Jul;231(7):1413-6. doi: http://dx.doi.org/10.1002/jcp.25255
15. Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal Stem Cell Migration and Tissue Repair. Cells. 2019 Jul;8(8):784. doi: http://dx.doi.org/10.3390/cells8080784
16. Moeinzadeh S, Monavarian M, Kader S, Jabbari E. Sequential zonal chondrogenic differentiation of mesenchymal stem cells in cartilage matrices. Tissue Eng Part A. 2019 Feb;25(3-4):234-47. doi: http://dx.doi.org/10.1089/ten.TEA.2018.0083
17. Zhong L, Huang X, Karperien M, Post JN. The regulatory role of signaling crosstalk in hypertrophy of mscs and human articular chondrocytes. Int J Mol Sci. 2015 Aug;16(8):19225-47. doi: http://dx.doi.org/10.3390/ijms160819225
18. Jin G-Z, Kim H-W. Chondrogenic potential of dedifferentiated rat chondrocytes reevaluated in two- and three-dimensional culture conditions. Tissue Eng Regen Med. 2017 Nov;15(2):163-72. doi: http://dx.doi.org/10.1007/s13770-017-0094-6
19. Jakobsen RB, Østrup E, Zhang X, Mikkelsen TS, Brinchmann JE. Analysis of the effects of five factors relevant to in vitro chondrogenesis of human mesenchymal stem cells using factorial design and high throughput mRNA-profiling. PLoS One. 2014 May;9(5)6:e96615. doi: http://dx.doi.org/10.1371/journal.pone.0096615
20. Zimmermann P, Boeuf S, Dickhut A, Boehmer S, Olek S, Richter W. Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. Arthritis Rheum. 2008 Sep;58(9):2743-53. doi: http://dx.doi.org/10.1002/art.23736
21. Bwalya EC, Wijekoon HS, Fang J, Kim S, Hosoya K, Okumura M. Independent chondrogenic potential of canine bone marrow-derived mesenchymal stem cells in monolayer expansion cultures decreases in a passage-dependent pattern. J Vet Med Sci. 2018 Nov;80(11):1681-7. doi: http://dx.doi.org/10.1292/jvms.18-0202
22. Bian L, Zhai DY, Mauck RL, Burdick JA. Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng Part A. 2011 Apr;17(7-8):1137-45. doi: http://dx.doi.org/10.1089/ten.TEA.2010.0531
23. Liu J, Liu X, Zhou G, Xiao R, Cao Y. Conditioned medium from chondrocyte/scaffold constructs induced chondrogenic differentiation of bone marrow stromal cells. Anat Rec (Hoboken). 2012 Jul;295(7):1109-16. doi: http://dx.doi.org/10.1002/ar.22500
24. Shakhpazyan NK, Astrelina TA, Yakovleva MV. Mesenchymal stem cells from different human tissues: biological properties, quality and safety assessment for clinical use. Geny Kletki. 2012;7(1):23-33. (In Russ.)
25. Heo JS, Choi Y, Kim H-S, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016 Jan;37(1):115-25. doi: http://dx.doi.org/10.3892/ijmm.2015.2413
26. Bernardo ME, Emons JAM, Karperien M, Nauta AJ, Willemze R, Roelofs H, et al. Human Mesenchymal Stem Cells Derived from Bone Marrow Display a Better Chondrogenic Differentiation Compared with Other Sources. Connect Tissue Res. 2007;48(3):132-40. doi: http://dx.doi.org/10.1080/03008200701228464
27. Hsu S, Huang T-B, Cheng S-J, Weng S-Y, Tsai C-L, Tseng C-S, et al. Chondrogenesis from Human Placenta-Derived Mesenchymal Stem Cells in Three-Dimensional Scaffolds for Cartilage Tissue Engineering. Tissue Eng Part A. 2011 Jun;17(11-12):1549-60. doi: http://dx.doi.org/10.1089/ten.TEA.2010.0419
28. Beeravolu N, Khan I, McKee C, Dinda S, Thibodeau B, Wilson G, et al. Isolation and comparative analysis of potential stem/progenitor cells from different regions of human umbilical cord. Stem Cell Res. 2016 May;16(3):696-711. doi: http://dx.doi.org/10.1016/j.scr.2016.04.010
29. Zhernosechenko AA, Isaykina YaI, Filipovich TV, Lyakh EG. Chondrogenic and osteogenic potential of bone marrow and placental mesenchymal stem cells. Ves Nats Akad Navuk Belarusі Ser Med Navuk. 2021;18(1):36-44. doi:10.29235/1814-6023-2021-18-1-36-45. (In Russ.)
30. Bornes TD, Adesida AB, Jomha NM. Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arthritis Res Ther. 2014;16(5):432. doi: http://dx.doi.org/10.1186/s13075-014-0432-1
31. Nejadnik H, Hui JH, Choong EPF, Tai B-C, Lee EH. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010 Jun;38(6):1110-6. doi: http://dx.doi.org/10.1177/0363546509359067
32. Wu Y, Yang Z, Denslin V, Ren XF, Lee CS, Yap FL, et al. Repair of Osteochondral Defects With Predifferentiated Mesenchymal Stem Cells of Distinct Phenotypic Character Derived From a Nanotopographic Platform. Am J Sports Med. 2020 Jun;48(7):1735-47. doi: http://dx.doi.org/10.1177/0363546520907137
33. Marquass B, Schulz R, Hepp P, Zscharnack M, Aigner T, Schmidt S, et al. Matrix-Associated Implantation of Predifferentiated Mesenchymal Stem Cells Versus Articular Chondrocytes: In Vivo Results of Cartilage Repair After 1 Year. Am J Sports Med. 2011 Jul;39(7):1401-12. doi: http://dx.doi.org/10.1177/0363546511398646
34. Zscharnack M, Hepp P, Richter R, Aigner T, Schulz R, Somerson J, et al. Repair of chronic osteochondral defects using predifferentiated mesenchymal stem cells in an ovine model. Am J Sports Med. 2010 Sep;38(9):1857-69. doi: http://dx.doi.org/10.1177/0363546510365296
35. Bornes TD, Adesida AB, Jomha NM. Articular Cartilage Repair with Mesenchymal Stem Cells After Chondrogenic Priming: A Pilot Study. Tissue Eng Part A. 2018 May;24(9-10):761-74. doi: http://dx.doi.org/10.1089/ten.TEA.2017.0235
36. Bukach DV, Beletskiy AV, Eysmont OL, Mokhammadi MT, Isaykina YaI. Autotransplantation of mesenchymal stem cells for regenerative repair of articular cartilage damage (experimental study). Ves Nats Akad Navuk Belarusі Ser Med Navuk. 2015;(1):5-11. (In Russ.)
37. Park Y-B, Ha C-W, Kim J-A, Kim S, Park Y-G. Comparison of Undifferentiated Versus Chondrogenic Predifferentiated Mesenchymal Stem Cells Derived From Human Umbilical Cord Blood for Cartilage Repair in a Rat Model. Am J Sports Med. 2019 Feb;47(2):451-61. doi: http://dx.doi.org/10.1177/0363546518815151
38. Dashtdar H, Rothan HA, Tay T, Ahmad RE, Ali R, Tay LX, et al. A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits. J Orthop Res. 2011 Sep;29(9):1336-42. doi: http://dx.doi.org/10.1002/jor.21413

Information about authors:
H.A. Zhernasechanka – Candidate of Biological Sciences, senior research officer of the Laboratory of Cellular Biotechnologies and Cytotherapy, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology; lecturer of the Department of Pediatric Endocrinology; lecturer of the Chair of Pediatric Endocrinology, Clinical Genetics and Immunology, Belarusian State Medical University,
e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Hanna A. Zhernasechanka;
Y.I. Isaikina – Candidate of Biological Sciences, head of the Laboratory of Cellular Biotechnologies and Cytotherapy, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology; lecturer of the Department of Pediatric Endocrinology;
E.G. Liakh – senior research officer of the Laboratory of Cellular Biotechnologies and Cytotherapy, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology; lecturer of the Department of Pediatric Endocrinology.

Поиск по сайту