Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2023.3.86

A.T. Shchastniy, A.S. Osochuk, S.S. Osochuk, A.F. Martsinkevich
Changes of fatty acids spectrum of very low density lipoproteins in patients with chronic renal failure and in the early terms after kidney transplantation
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus

Vestnik VGMU. 2023;22(3):86-96.

Abstract.
Objectives. To evaluate the fatty acid spectrum of native very low density lipoproteins (VLDL) in patients with terminal chronic renal failure and in the early terms after kidney transplantation.
Material and methods. The study group included 15 men (36-60 years old) and 15 women (36-55 years old). The control group included 15 healthy men and 15 healthy women of the same age. Patients’ blood was taken before kidney transplantation, before the first administration of tacrolimus, in 24 hours and on day 7 after kidney transplantation. VLDL were isolated by preparative ultracentrifugation method. The spectrum of fatty acids was determined by gas chromatography. Statistical analysis was performed using the application package R version 4.0.5 (2021-03-31).
Results. A statistically significant decrease in the content of the following fatty acids was revealed in patients with CRF: myristic (C14:0), myristoleic (C14:1), pentadecanoic (C15:0), pentadecenoic (C15:1), palmitic (C16 :0), trans-isomer of linoleic acid (C18:2n6t), arachidic (C20:0), eicosadienoic (C20:2), erucic (C22:1), docosadienoic (C22:2) and lignoceric (C24:0). In addition, an increase in the content of oleic (C18:1n9c), linoleic (C18:2n6c), arachidonic acid (C20:4n6) in patients of the same group was revealed. The evaluation of the spectrum of fatty acids in patients with end-stage renal failure after transplantation of a donor kidney showed almost identical changes, indicating the persistence of the imbalance of fatty acids. However, there were some differences: an increase in the content of palmitic acid (C16:0) after 24 hours and on day 7 after the operation, a decrease in the content of C18:1n9t and ℽ-linolenic acid (C18:3n6c). In addition, a decrease in the ratio of saturated and monounsaturated fatty acids and an increase in the ratio of unsaturated and polyunsaturated fatty acids were found.
Conclusions. Changes in the fatty acid spectrum of native VLDL were mainly of a negative proatherogenic nature, probably associated, among other things, with a disturbance of the production of fatty acids by the intestinal microbiota, contributing to the growth of insulin resistance.
Keywords: VLDL, fatty acids, tacrolimus, insulin resistance, kidney transplantation, CRF.

Information about the source of support in the form of grants, equipment, medicinal agents. The research was carried out within the frames of the State Research Program (GPNI) “Translational medicine”, subprogram 4.2 “Fundamental aspects of medical science”, task 3.37 “To study the condition of lipid transport and immune systems of patients with kidney transplantation and to substantiate the approaches to their correction”, State Registration No. 20220305 dated 16.03.2022.

References

1. Shchastny AT, Osochuk AS, Osochuk SS, Martsinkevich AF. Effect of terminal renal failure on the composition of native blood lipoprotein complexes in men and women. Vestn VGMU. 2022;21(6):71-7. doi: http://dx.doi.org/10.22263/2312-4156.2022.6.78 (In Russ.)
2. Fredrickson DS, Lees RS. A system for phenotyping hyperlipoproteinemia. Circulation. 1965 Mar;31:321-7. doi: http://dx.doi.org/10.1161/01.cir.31.3.321
3. Feingold KR. Lipid and Lipoprotein Metabolism. Endocrinol Metab Clin North Am. 2022 Sep;51(3):437-58. doi: http://dx.doi.org/10.1016/j.ecl.2022.02.008
4. Wu SA, Kersten S, Qi L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol Metab. 2021 Jan;32(1):48-61. doi: http://dx.doi.org/10.1016/j.tem.2020.11.005
5. Pizzini A, Lunger L, Demetz E, Hilbe R, Weiss G, Ebenbichler C, et al. The Role of Omega-3 Fatty Acids in Reverse Cholesterol Transport: A Review. Nutrients. 2017 Oct;9(10):1099. doi: http://dx.doi.org/10.3390/nu9101099
6. Titov VN, Rozhkova TA, Aripovsky AV. Consecutive formation of the functions of high-, low-density and very-low-density lipoproteins during phylogenesis. Unique algorithm of the effects of lipid-lowering drugs. Ter Arkh. 2015;87(9):123-31. doi: http://dx.doi.org/10.17116/terarkh2015879123-131 (In Russ.)
7. Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006 Jun;83(6 Suppl):1505S-19S. doi: http://dx.doi.org/10.1093/ajcn/83.6.1505S
8. Priante G, Musacchio E, Valvason C, Clari G, Bordin L, Sartori L, et al. Further insights about the beneficial effects of n-3 fatty acids in the early molecular events of renal fibrosis in vitro. J Nephrol. 2013 Jul-Aug;26(4):652-9. doi: http://dx.doi.org/10.5301/jn.5000193
9. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014 Jun;510(7503):92-101. doi: http://dx.doi.org/10.1038/nature13479
10. Eide IA, Jenssen T, Hartmann A, Diep LM, Dahle DO, Reisæter AV, et al. Plasma levels of marine n-3 polyunsaturated fatty acids and renal allograft survival. Nephrol Dial Transplant. 2016 Jan;31(1):160-7. doi: http://dx.doi.org/10.1093/ndt/gfv339
11. Syren M-L, Turolo S, Marangoni F, Milani GP, Edefonti A, Montini G, et al. The polyunsaturated fatty acid balance in kidney health and disease: A review. Clin Nutr. 2018 Dec;37(6 Pt A):1829-39. doi: http://dx.doi.org/10.1016/j.clnu.2017.11.019
12. Khor B-H, Narayanan SS, Chinna K, Gafor AHA, Daud ZAM, Khosla P, et al. Blood Fatty Acid Status and Clinical Outcomes in Dialysis Patients: A Systematic Review / B. H. Khor [et al.] // Nutrients. 2018 Sep. Vol. 10, N 10. Art. 1353.
13. Sakai H, Matsumoto KI, Urano T, Sakane F. Myristic acid selectively augments β-tubulin levels in C2C12 myotubes via diacylglycerol kinase δ. FEBS Open Bio. 2022 Oct;12(10):1788-96. doi: http://dx.doi.org/10.1002/2211-5463.13466
14. Bunak VV. Vydelenie etapov ontogeneza i khronologicheskie granitsy vozrastnykh periodov. Sovet Pedagogika. 1965;(11):105-19. (In Russ.)
15. Perkins EG. Analysis of lipids and lipoproteins. Champaign: American Oil Chemists' Society; 1975. 299 p.
16. Bates D, Machler M, Bolker B, Walker SJ. Fitting Linear Mixed-Effects Models Using lme4. J Statistical Software. 2015;67(1):1-48. doi: http://dx.doi.org/10.18637/jss.v067.i01
17. Searle SR, Speed FM, Milliken GA. Population Marginal Means in the Linear Model: An Alternative to Least Squares Means. Am Statistician. 1980 Nov;34(4):216-21. doi: http://dx.doi.org/10.2307/2684063
18. Sakai H, Kado S, Taketomi A, Sakane F. Diacylglycerol kinase δ phosphorylates phosphatidylcholine-specific phospholipase C-dependent, palmitic acid-containing diacylglycerol species in response to high glucose levels. J Biol Chem. 2014 Sep;289(38):26607-26617. doi: http://dx.doi.org/10.1074/jbc.M114.590950
19. Sakane F, Imai S, Kai M, Yasuda S, Kanoh H. Diacylglycerol kinases: why so many of them? Biochim Biophys Acta. 2007 Jul;1771(7):793-806. doi: http://dx.doi.org/10.1016/j.bbalip.2007.04.006
20. Shulga YV, Topham MK, Epand RM. Regulation and functions of diacylglycerol kinases. Chem Rev. 2011 Oct;111(10):6186-208. doi: http://dx.doi.org/10.1021/cr1004106
21. Mérida I, Avila-Flores A, Merino E. Diacylglycerol kinases: at the hub of cell signaling. Biochem J. 2008 Jan;409(1):1-18. doi: http://dx.doi.org/10.1042/BJ20071040
22. Alonso-Castro AJ, Serrano-Vega R, Pérez Gutiérrez S, Isiordia-Espinoza MA, Solorio-Alvarado CR. Myristic acid reduces skin inflammation and nociception. J Food Biochem. 2022 Jan;46(1):e14013. doi: http://dx.doi.org/10.1111/jfbc.14013
23. Quan LH, Zhang C, Dong M, Jiang J, Xu H, Yan C, et al. Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation. Gut. 2020;69(7):1239-47. doi: http://dx.doi.org/10.1136/gutjnl-2019-319114
24. Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012 Oct;151(2):400-13. doi: http://dx.doi.org/10.1016/j.cell.2012.09.010
25. Duan YJ, Murase S, Okuda J, Tamura A, Miwa I. Stimulatory effect of fatty acid treatment on glucose utilization in human erythrocytes. Biochim Biophys Acta. 1997 Feb;1334(1):89-97. doi: http://dx.doi.org/10.1016/s0304-4165(96)00075-x
26. Burchat N, Akal T, Ntambi JM, Trivedi N, Suresh R, Sampath H. SCD1 is nutritionally and spatially regulated in the intestine and influences systemic postprandial lipid homeostasis and gut-liver crosstalk. Biochim Biophys Acta Mol Cell Biol Lipids. 2022 Sep;1867(9):159195. doi: http://dx.doi.org/10.1016/j.bbalip.2022.159195
27. Djoussé L. Is plasma pentadecanoic acid a reasonable biomarker of dairy consumption? J Am Heart Assoc. 2013 Aug;2(4):e000393. doi: http://dx.doi.org/10.1161/JAHA.113.000393
28. Jenkins B, West JA, Koulman A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic Acid (c15:0) and heptadecanoic Acid (c17:0) in health and disease. Molecules. 2015 Jan;20(2):2425-44. doi: http://dx.doi.org/10.3390/molecules20022425
29. Yu SY, Kim JS, Oh BS, Park SH, Kang SW, Park JE, et al. Bacteroides faecalis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2019 Dec;69(12):3824-9. doi: http://dx.doi.org/10.1099/ijsem.0.003690
30. Meikle PJ, Wong G, Barlow CK, Weir JM, Greeve MA, MacIntosh GL, et al. Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes. PLoS One. 2013 Sep;8(9):e74341. doi: http://dx.doi.org/10.1371/journal.pone.0074341
31. Nestel PJ, Straznicky N, Mellett NA, Wong G, De Souza DP, Tull DL, et al. Specific plasma lipid classes and phospholipid fatty acids indicative of dairy food consumption associate with insulin sensitivity. Am J Clin Nutr. 2014 Jan;99(1):46-53. doi: http://dx.doi.org/10.3945/ajcn.113.071712
32. Jiang XS, Cai MY, Li XJ, Zhong Q, Li ML, Xia YF, et al. Activation of the Nrf2/ARE signaling pathway protects against palmitic acid-induced renal tubular epithelial cell injury by ameliorating mitochondrial reactive oxygen species-mediated mitochondrial dysfunction. Front Med (Lausanne). 2022 Sep;9:939149. doi: http://dx.doi.org/10.3389/fmed.2022.939149
33. Cobbs A, Chen X, Zhang Y, George J, Huang MB, Bond V, et al. Saturated fatty acid stimulates production of extracellular vesicles by renal tubular epithelial cells. Mol Cell Biochem. 2019 Aug;458(1-2):113-24. doi: http://dx.doi.org/10.1007/s11010-019-03535-6
34. Bermúdez MA, Pereira L, Fraile C, Valerio L, Balboa MA, Balsinde J. Roles of Palmitoleic Acid and Its Positional Isomers, Hypogeic and Sapienic Acids, in Inflammation, Metabolic Diseases and Cancer. Cells. 2022 Jul;11(14):2146. doi: http://dx.doi.org/10.3390/cells11142146
35. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008 Sep;134(6):933-44. doi: http://dx.doi.org/10.1016/j.cell.2008.07.048
36. Bolsoni-Lopes A, Festuccia WT, Chimin P, Farias TS, Torres-Leal FL, Cruz MM, et al. Palmitoleic acid (n-7) increases white adipocytes GLUT4 content and glucose uptake in association with AMPK activation. Lipids Health Dis. 2014 Dec;13:199. doi: http://dx.doi.org/10.1186/1476-511X-13-199
37. Bolsoni-Lopes A, Festuccia WT, Farias TS, Chimin P, Torres-Leal FL, Derogis PB, et al. Palmitoleic acid (n-7) increases white adipocyte lipolysis and lipase content in a PPARα-dependent manner. Am J Physiol Endocrinol Metab. 2013 Nov;305(9):E1093-102. doi: http://dx.doi.org/10.1152/ajpendo.00082.2013
38. Kunešová M, Hlavatý P, Tvrzická E, Staňková B, Kalousková P, Viguerie N, et al. Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance: the DIOGENES study. Physiol Res. 2012;61(6):597-607. doi: http://dx.doi.org/10.33549/physiolres.932414
39. Kurotani K, Sato M, Ejima Y, Nanri A, Yi S, Pham NM, et al. High levels of stearic acid, palmitoleic acid, and dihomo-γ-linolenic acid and low levels of linoleic acid in serum cholesterol ester are associated with high insulin resistance. Nutr Res. 2012 Sep;32(9):669-675. doi: http://dx.doi.org/10.1016/j.nutres.2012.07.004
40. Stefan N, Kantartzis K, Celebi N, Staiger H, Machann J, Schick F, et al. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care. 2010 Feb;33(2):405-7. doi: http://dx.doi.org/10.2337/dc09-0544
41. Wahle KW, Heys SD, Rotondo D. Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res. 2004 Nov;43(6):553-87. doi: http://dx.doi.org/10.1016/j.plipres.2004.08.002
42. Kishino S, Ogawa J, Omura Y, Matsumura K, Shimizu S. Conjugated linoleic acid production from linoleic acid by lactic acid bacteria. J Am Oil Chem Soc. 2002;79:159-63.doi: http://dx.doi.org/10.1007/s11746-002-0451-4
43. Sulijaya B, Takahashi N, Yamazaki K. Lactobacillus-Derived Bioactive Metabolites for the Regulation of Periodontal Health: Evidences to Clinical Setting. Molecules. 2020 Apr;25(9):2088. doi: http://dx.doi.org/10.3390/molecules25092088
44. Bourre JM, Dumont O, Durand G. Dose-effect of dietary oleic acid: oleic acid is conditionally essential for some organs. Reprod Nutr Dev. 2004 Jul-Aug;44(4):371-80. doi: http://dx.doi.org/10.1051/rnd:2004042
45. Sergeant S, Rahbar E, Chilton FH. Gamma-linolenic acid, Dihommo-gamma linolenic, Eicosanoids and Inflammatory Processes. Eur J Pharmacol. 2016 Aug;785:77-86. doi: http://dx.doi.org/10.1016/j.ejphar.2016.04.020
46. Tsou PL, Wu CJ. Sex-Dimorphic Association of Plasma Fatty Acids with Cardiovascular Fitness in Young and Middle-Aged General Adults: Subsamples from NHANES 2003⁻2004. Nutrients. 2018 Oct;10(10):1558. doi: http://dx.doi.org/10.3390/nu10101558
47. Yamazaki Y, Kondo K, Maeba R, Nishimukai M, Nezu T, Hara H. Proportion of nervonic acid in serum lipids is associated with serum plasmalogen levels and metabolic syndrome. J Oleo Sci. 2014;63(5):527-37. doi: http://dx.doi.org/10.5650/jos.ess13226
48. Klawitter J, Bek S, Zakaria M, Zeng C, Hornberger A, Gilbert R, et al. Fatty acid desaturation index in human plasma: Comparison of different analytical methodologies for the evaluation of diet effects. Anal Bioanal Chem. 2014 Oct;406(25):6399-408. doi: http://dx.doi.org/10.1007/s00216-014-8020-4
49. Schwingshackl L, Hoffmann G. Monounsaturated fatty acids and risk of cardiovascular disease: Synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients. 2012 Dec;4(12):1989-2007. doi: http://dx.doi.org/10.3390/nu4121989
50. Tory R, Sachs-Barrable K, Goshko CB, Hill JS, Wasan KM. Tacrolimus-induced elevation in plasma triglyceride concentrations after administration to renal transplant patients is partially due to a decrease in lipoprotein lipase activity and plasma concentrations. Transplantation. 2009 Jul;88(1):62-8. doi: http://dx.doi.org/10.1097/TP.0b013e3181aa7d04

Information about authors:
A.T. Shchastniy – Doctor of Medical Sciences, professor, head of the Chair of Hospital Surgery with the course of the Faculty for Advanced Training & Retraining, Vitebsk State Order of Peoples’ Friendship Medical University, ORCID: https://orcid.org/0000-0003-2796-4240
A.S. Osochuk – postgraduate of the Chair of Hospital Surgery with the course of the Faculty for Advanced Training & Retraining, Vitebsk State Order of Peoples’ Friendship Medical University, https://orcid.org/0000-0002-5942-3601
E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Alexander S. Osochuk;
S.S. Osochuk – Doctor of Medical Sciences, professor, head of the research laboratory, Vitebsk State Order of Peoples’ Friendship Medical University, ORCID: https://orcid.org/0000-0003-2074-3832
A.F. Martsinkevich – Candidate of Biological Sciences, associate professor of the Chair of General & Clinical Biochemistry with the course of the Faculty for Advanced Training & Retraining, Vitebsk State Order of Peoples’ Friendship Medical University, https://orcid.org/0000-0003-3655-4489

Поиск по сайту