Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2023.4.9

A.V. Bialiauski, Е.S. Pashinskaya, V.V. Pabiarzhyn
Synaptic plasticity of the mammalian circadian system and expression of synaptic genes
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus

Vestnik VGMU. 2023;22(4):9-20.

Abstract.
The vital activity of humans and other animals involves constant structural changes in the CNS. During learning, memorizing information and behavior, rearrangements in the bodies of neurons, nerve endings and synaptic connections take place in the nervous centers. Neurons, glial cells and synapses in the brain of both invertebrates and vertebrates possess plasticity, in other words their structure and physiology change in response to internal and external stimuli. As a result, the morphology of neurons and neuronal networks are constantly modified in response to various irritants. In mammals, it has been found that the number of synapses, the size and shape of neurons change rhythmically throughout the day, that is these changes are circadian. They are generated by endogenous circadian clocks, but some rhythmic changes in the morphology of neurons, the number and structure of synapses are directly controlled by the environmental signals or both by external signals and circadian clocks. Neurons forming central clocks not only regulate the circadian plasticity of the brain, but also undergo circadian changes in their own processes. Accordingly, various factors of the external and internal environment affecting the synaptic plasticity of the circadian system components may be the cause of various pathological processes in the mammalian body. The effect of parasitic diseases on the functions of the circadian system is of particular interest, but there are few researches of this kind.
Keywords: synaptic plasticity, circadian system, synaptic genes, receptors.

References

1. Bosler O, Girardet C, Franc J-L, Becquet D, François-Bellan A-M. Structural plasticity of the circadian timing system. An overview from flies to mammals. Front Neuroendocrinol. 2015 Jul;38:50-64. doi: http://dx.doi.org/10.1016/j.yfrne.2015.02.001
2. Appelbaum L, Wang G, Yokogawa T, Skariah GM, Smith SJ, Mourrain P, et al. Circadian and Homeostatic Regulation of Structural Synaptic Plasticity in Hypocretin Neurons. Neuron. 2010 Oct;68(1):87-98. doi: http://dx.doi.org/10.1016/j.neuron.2010.09.006  
3. Frank MG. Circadian Regulation of Synaptic Plasticity. Biology (Basel). 2016 Jul;5(3):31. doi: http://dx.doi.org/10.3390/biology5030031  
4. Krzeptowski W, Hess G, Pyza E. Circadian Plasticity in the Brain of Insects and Rodents. Front Neural Circuits. 2018 May;12:32. doi: http://dx.doi.org/10.3389/fncir.2018.00032  
5. Ono D, Honma K, Honma S. Circadian and ultradian rhythms of clock gene expression in the suprachiasmatic nucleus of freely moving mice. Sci Rep. 2015 Jul;5:12310. doi: http://dx.doi.org/10.1038/srep12310  
6. Riddle M, Mezias E, Foley D, LeSauter J, Silver R. Differential localization of PER1 and PER2 in the brain master circadian clock. Eur J Neurosci. 2017 Jun;45(11):1357-67. doi: http://dx.doi.org/10.1111/ejn.13441  
7. Yamaguchi Y, Okada K, Mizuno T, Ota T, Yamada H, Doi M, et al. Real-Time Recording of Circadian Per1 and Per2 Expression in the Suprachiasmatic Nucleus of Freely Moving Rats. J Biol Rhythms. 2016 Feb;31(1):108-11. doi: http://dx.doi.org/10.1177/0748730415621412  
8. Machaalani R, Hunt NJ, Waters KA. Effects of changes in energy homeostasis and exposure of noxious insults on the expression of orexin (hypocretin) and its receptors in the brain. Brain Res. 2013 Aug;1526:102-22. doi: http://dx.doi.org/10.1016/j.brainres.2013.06.035  Epub 2013 Jul 3.
9. Kamiński T, Smolińska N. Expression of orexin receptors in the pituitary. Vitam Horm. 2012;89:61-73. doi: http://dx.doi.org/10.1016/B978-0-12-394623-2.00004-4  
10. Sun Y, Tisdale RK, Kilduff TS. Hypocretin/Orexin Receptor Pharmacology and Sleep Phases. Front Neurol Neurosci. 2021;45:22-37. doi: http://dx.doi.org/10.1159/000514963  
11. Monti JM, Jantos H. The role of serotonin 5-HT7 receptor in regulating sleep and wakefulness. Rev Neurosci. 2014;25(3):429-37. doi: http://dx.doi.org/10.1515/revneuro-2014-0016  
12. Ren J, Isakova A, Friedmann D, Zeng J, Grutzner SM, Pun A, et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. Elife. 2019 Oct;8:e49424. doi: http://dx.doi.org/10.7554/eLife.49424  
13. Sharp T, Barnes NM. Central 5-HT receptors and their function; present and future. Neuropharmacology. 2020 Oct;177:108155. doi: http://dx.doi.org/10.1016/j.neuropharm.2020.108155  
14. Kusek M, Sowa J, Kamińska K, Gołembiowska K, Tokarski K. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin. Front Cell Neurosci. 2015 Aug;9:324. doi: http://dx.doi.org/10.3389/fncel.2015.00324  
15. Garcia-Garcia AL, Newman-Tancredi A, Leonardo ED. P5-HT1A receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology (Berl). 2014 Feb;231(4):623-36. doi: http://dx.doi.org/10.1007/s00213-013-3389-x  
16. Atmaca HT. Expression of serotonin 2A, 2C, 6 and 7 receptor and IL-6 mRNA in experimental toxoplasmic encephalitis in mice. Heliyon. 2019 Nov;5(11):e02890. doi: http://dx.doi.org/10.1016/j.heliyon.2019.e02890  
17. Higgins GA, Fletcher PJ. Therapeutic Potential of 5-HT2C Receptor Agonists for Addictive Disorders. ACS Chem Neurosci. 2015 Jul;6(7):1071-88. doi: http://dx.doi.org/10.1021/acschemneuro.5b00025  
18. Berger M, Tecott LH. Serotonin System Gene Knockouts. In: Roth BL, ed. The Serotonin Receptors: From Molecular Pharmacology to Human Therapeutics. New Jersey: Humana Press Inc; 2006. P. 537-75. doi:10.1007/978-1-59745-080-5_19
19. Sagi Y, Medrihan L, George K, Barney M, McCabe KA, Greengard P. Emergence of 5-HT5A signaling in parvalbumin neurons mediates delayed antidepressant action. Mol Psychiatry. 2020;25:1191-201. doi: http://dx.doi.org/10.1038/s41380-019-0379-3
20. De Jong IEM, Mørk A. Antagonism of the 5-HT6 receptor – Preclinical rationale for the treatment of Alzheimer’s disease. Neuropharmacology. 2017 Oct;125:50-63. doi: http://dx.doi.org/10.1016/j.neuropharm.2017.07.010  
21. Helland-Riise SH, Vindas MA, Johansen IB, Nadler LE, Weinersmith KL, Hechinger RF, et al. Brain-encysting trematodes (Euhaplorchis californiensis) decrease raphe serotonergic activity in California killifish (Fundulus parvipinnis). Biol Open. 2020 Jul;9(7):bio049551. doi: http://dx.doi.org/10.1242/bio.049551  
22. McBurney-Lin J, Lu J, Zuo Y, Yang H. Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. Neurosci Biobehav Rev. 2019 Oct;105:190-9. doi: http://dx.doi.org/10.1016/j.neubiorev.2019.06.009  
23. Cirelli C, Tononi G. Locus Ceruleus Control of State-Dependent Gene Expression. J Neurosci. 2004 Jun;24(23):5410-9. doi: http://dx.doi.org/10.1523/JNEUROSCI.0949-04.2004  
24. Benarroch EE. Locus coeruleus. Cell Tissue Res. 2018 Jul;373(1):221-32. doi: http://dx.doi.org/10.1007/s00441-017-2649-1  
25. Bekdash RA. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer’s Disease. Int J Mol Sci. 2021 Jan;22(3):1273. doi: http://dx.doi.org/10.3390/ijms22031273  
26. Berridge CW, Schmeichel BE, España RA. Noradrenergic modulation of wakefulness/arousal. Sleep Med Rev. 2012 Apr;16(2):187-97. doi: http://dx.doi.org/10.1016/j.smrv.2011.12.003  
27. Berridge CW, Waterhouse BD. The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev. 2003 Apr;42(1):33-84. doi: http://dx.doi.org/10.1016/s0165-0173(03)00143-7  
28. Maletic V, Eramo A, Gwin K, Offord SJ , Duffy RA. The Role of Norepinephrine and Its α-Adrenergic Receptors in the Pathophysiology and Treatment of Major Depressive Disorder and Schizophrenia: A Systematic Review. Front Psychiatry. 2017 Mar7;8:42. doi: http://dx.doi.org/10.3389/fpsyt.2017.00042  
29. Liu Y-R, Loh E-W, Lan T-H, Chen S-F, Yu Y-H, Chang Y-H, et al. ADRA1A gene is associated with BMI in chronic schizophrenia patients exposed to antipsychotics. Pharmacogenomics J. 2010 Feb;10(1):30-9. doi: http://dx.doi.org/10.1038/tpj.2009.55  
30. Stone EA, Lin Y, Sarfraz Y, Quartermain D. Marked behavioral activation from inhibitory stimulation of locus coeruleus α1-adrenoceptors by a full agonist. Brain Res. 2009 Sep;1291:21-31. doi: http://dx.doi.org/10.1016/j.brainres.2009.07.049  
31. Santana N, Mengod G, Artigas F. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors. Int J Neuropsychopharmacol. 2013 Jun;16(5):1139-51. doi: http://dx.doi.org/10.1017/S1461145712001083  
32. Domyancic AV, Morilak DA. Distribution of α1A adrenergic receptor m RNA in the rat brain visualized by in situ hybridization. J Comp Neurol. 1997 Sep;386(3):358-78. doi: http://dx.doi.org/10.1002/(sici)1096-9861(19970929)386:3<358::aid-cne3>3.0.co;2-0  
33. Doze VA, Papay RS, Goldenstein BL, Gupta MK, Collette KM, Nelson BW, et al. Long-Term α1A-Adrenergic Receptor Stimulation Improves Synaptic Plasticity, Cognitive Function, Mood, and Longevity. Mol Pharmacol. 2011 Oct;80(4):747-58. doi: http://dx.doi.org/10.1124/mol.111.073734  
34. Day HE, Campeau S, Watson SJ, Akil H. Distribution of α 1a-, α 1b- and α 1d-adrenergic receptor mRNA in the rat brain and spinal cord. J Chem Neuroanat. 1997 Jul;13(2):115-39. doi: http://dx.doi.org/10.1016/s0891-0618(97)00042-2  
35. Luhrs L, Manlapaz C, Kedzie K, Rao S, Cabrera-Ghayouri S, Donello J, et al. Function of brain α2B-adrenergic receptor characterized with subtype-selective α2B antagonist and KO mice. Neuroscience. 2016 Dec;339:608-21. doi: http://dx.doi.org/10.1016/j.neuroscience.2016.10.024
36. Hopwood SE, Stamford JA. Noradrenergic modulation of serotonin release in rat dorsal and median raphé nuclei via α1 and α2A adrenoceptors. Neuropharmacology. 2001 Sep;41(4):433-42. doi: http://dx.doi.org/10.1016/s0028-3908(01)00087-9  
37. Shi G, Xing L, Wu D, Bhattacharyya BJ, Jones CR, McMahon T, et al. A Rare Mutation of β1-Adrenergic Receptor Affects Sleep/Wake Behaviors. Neuron. 2019 Sep;103(6):1044-55. doi: http://dx.doi.org/10.1016/j.neuron.2019.07.026  
38. O'Dell TJ, Connor SA, Guglietta R, Nguyen PV. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus. Learn Mem. 2015 Aug;22(9):461-71. doi: http://dx.doi.org/10.1101/lm.031088.113  
39. Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R, et al. Astrocytic β2-adrenergic receptors: From physiology to pathology. Prog Neurobiol. 2010 Jul;91(3):189-99. doi: http://dx.doi.org/10.1016/j.pneurobio.2010.01.011

Information about authors:
A.V. Bialiauski – postgraduate of the Chair of Infectious Diseases with the course of the Faculty for Advanced Training & Retraining, Vitebsk State Order of Peoples’ Friendship Medical University,
email: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Aleg V. Bialiauski;
Е.S. Pashinskaya – Candidate of Biological Sciences, associate professor, head of the Scientific and Educational Center “Center for Molecular Genetic and Biotechnological Research”, Vitebsk State Order of Peoples’ Friendship Medical University;
V.V. Pabiarzhyn – Candidate of Biological Sciences, associate professor of the Chair of Biology & Pharmaceutical Botany, Vitebsk State Order of Peoples’ Friendship Medical University.

Поиск по сайту