Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2023.5.67

A.A. Vasilyuk
Anti-inflammatory activity of a number of new piperidine derivatives with substitutions in the 1st and the 4th positions
Grodno State Medical University, Grodno, Republic of Belarus

Vestnik VGMU. 2023;22(5):67-72.

Abstract.
Objectives. To study the anti-inflammatory activity of 13 new piperidine derivatives with substitutions in the 1st and the 4th positions.
Material and methods. For studying the anti-inflammatory activity, a model of acute exudative inflammation was used; lambda-carrageenan acted as a phlogogen. Rats were subcutaneously injected the test compounds/comparison analgesic diclofenac sodium, followed by intraplantar injection of carrageenan 30 minutes later. Oncometrically we assessed the initial volume of the limb (before the introduction of phlogogen) and the volume of the limb in 1.5 hours, 3 hours and one day after the start of the experiment.
Results. 4 out of 7 studied piperidine derivatives demonstrated anti-inflammatory activity in one or more doses – AGV-22, 23, 24, 31. At the same time, a high anti-inflammatory potential can be noted in the compound AGV-22, the activity of which at a dose of 20 mg/kg in this series of experiments is comparable to the activity of the reference drug diclofenac. AGV-22 statistically significantly reduced the exudative process in the late phase of exudation (24 hours after administration of carrageenan) at a dose of 10 mg/kg and in all phases of carrageenan edema at a dose of 20 mg/kg. The anti-inflammatory activity of other compounds was an order of magnitude lower: AGV-24, AGV-31 and AGV-23 reduced paw swelling only at certain stages of edema.
Conclusions. A new piperidine derivative with substitutions in the 1st and the 4th positions, AGV-22, combines high analgesic and anti-inflammatory activity. The anti-inflammatory effect of AGV-22 may be due to inhibition of cyclooxygenase and suppression of the inflammatory prostaglandins synthesis, and the spectrum of pharmacological activity is similar to non-steroidal anti-inflammatory drugs.
Keywords: inflammation, pain, anti-inflammatory activity, carrageenan edema, piperidine derivatives, non-steroidal anti-inflammatory drugs.

References

1. Rachin AP, Sharov MN, Averchenkova AA, Vygovskaya SN, Nuvakhova MB. Chronic pain: from pathogenesis to innovative treatments. Rus Med Zhurn. 2017;(9):625-31. (In Russ.)
2. Gordeev SA. Pain: classification, structural and functional organization of nociceptive and antinociceptive systems, electroneuromyographic methods of research. Uspekhi Fiziol Nauk. 2019;50(4):87-104. (In Russ.) doi: http://dx.doi.org/10.1134/S0301179819040039
3. Velts NYu, Zhuravleva EO, Bukatina TM, Kutekhova GV. Non-steroidal anti-inflammatory drugs: safety issues in use. Bezopasnost' Risk Farmakoterapii. 2018;6(1):11-8. (In Russ.) doi: http://dx.doi.org/10.30895/2312-7821-2018-6-1-11-18
4. Prokhorovich EA. Nonsteroidal anti-inflammatory drugs - a collection of clones or a commonwealth of bright individuals? A clinical pharmacologist's perspective. Rus Med Zhurn. 2020;(6):2-9. (In Russ.)
5. Necas J, Bartosikova L. Carrageenan: a review. Veterinarni Med. 2013;58(4):187-205.
6. Frolov NA, Vereshchagin AN. Piperidine Derivatives: Recent Advances in Synthesis and Pharmacological Applications. Int J Mol Sci. 2023;24(3):2937. doi: http://dx.doi.org/10.3390/ijms24032937
7. Wiese C, Maestrup EG, Schepmann D, Vela JM, Holenz J, Buschmann H, et al. Pharmacological and metabolic characterisation of the potent sigma1 receptor ligand 1’-benzyl-3-methoxy-3H-spiro[[2]benzofuran-1,4’-piperidine]. J Pharm Pharmacol. 2009 May;61(5):631-40. doi: http://dx.doi.org/10.1211/jpp/61.05.0012
8. Le Bourdonnec B, Windh RT, Leister LK, Jean Zhou Q, Ajello CW, Gu M, et al. Spirocyclic delta opioid receptor agonists for the treatment of pain: discovery of N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4’-piperidine]-4-yl) benzamide (ADL5747). J Med Chem. 2009;52(18):5685-702. doi: http://dx.doi.org/10.1021/jm900773n
9. Banerjee A, Fröhlich R, Schepmann D, Wünsch B. Synthesis and NMDA receptor affinity of dexoxadrol analogues with modifications in position 4 of the piperidine ring. Med Chem Comm. 2010;1:87-102.
10. Poojari S, Parameshwar NP, Krishnamurthy G, Kumara JKS, Sunil KN. Sathish N. Anti-inflammatory, antibacterial and molecular docking studies of novel spiro-piperidine quinazolinone derivatives. J Taibah University Sci. 2017 May;11(3):497-511. doi:10.1016/j.jtusci.2016.10.003
11. Buran K, Reis R, Sipahi H, Bayram FEÖ. Piperazine and piperidine-substituted 7-hydroxy coumarins for the development of anti-inflammatory agents. Arch Pharm (Weinheim). 2021 Jul;354(7):e2000354. doi: http://dx.doi.org/10.1002/ardp.202000354
12. Kaneko N, Kurata M, Yamamoto T, Shigemura T, Agematsu K, Yamazaki T, et al. KN3014, a piperidine-containing small compound, inhibits auto-secretion of IL-1β from PBMCs in a patient with Muckle-Wells syndrome. Sci Rep. 2020 Aug;10(1):13562. doi: http://dx.doi.org/10.1038/s41598-020-70513-0
13. Vasilyuk AA, Kozlovskiy VI, Akhmetova GS, Yu VK. Effects of novel piperidine derivatives with substitutions at the 1-position and 4-position in naloxone-sensitive analgesia. Zhurn GrGMU. 2021;19(5):501-5. (In Russ.) doi:10.25298/2221-8785-2021-19-5-501-505

Information about authors:
A.A. Vasilyuk – postgraduate of the Chair of Pharmacology named after Professor M.V. Korablev, Grodno State Medical University,
e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Anna A. Vasilyuk.

Поиск по сайту