Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2024.3.37

E.S. Panko1,2, S.V. Zhavoronok1, A.M. Solovchuk3, S.V. Panko2,4
Functional disturbances of respiratory pump muscles in the acute phase of COVID-19
1Belarusian State Medical University, Minsk, Republic of Belarus
2Brest Regional Clinical Hospital, Brest, Republic of Belarus
3Brest State Technical University, Brest, Republic of Belarus
4Brest State University named after A.S. Pushkin, Brest, Republic of Belarus

Vestnik VGMU. 2024;23(3):37-46.

Abstract.
Objectives. To evaluate and to analyze the main indicators of respiratory pump function and their predictive properties in patients in the acute phase of the Covid-19 course.
Material and methods. The studies were carried out on 384 patients with a clinically and laboratory-confirmed diagnosis of COVID-19, placed in the Brest Regional Clinical Hospital from December 2021 to May 2022, aged from 7 to 95 years (60.6 ± 15.7 years, women – 59%).
The groups were stratified using the criteria specified in the Order of the Ministry of Health of the Republic of Belarus No. 841 dated June 22, 2022. Patients underwent spirometric studies of maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP) on the 2nd day (2.2±0.2) from the onset of the disease according to the instructions for the portable MicroRPM device (CareFusion, UK).
Results. According to the results of spirometry, MEP and MIP values were below the normal ones in 90% and almost 100% of cases, respectively. At the same time, there were significant differences (p= 0.0000) between the group with moderate severity (52±22.3) and groups with severe (42.1±22.5) and extremely severe course of the disease (35.6±20.5).
A significant inverse correlation was found between the value of MEP, MIP and the length of patients’ hospital stay.
Conclusions. Thus, the results obtained confirm a pronounced decreased performance of the respiratory pump practically in all hospitalized patients in the acute phase of the infectious process caused by SARS -Co V-2 and a correlation of the degree of weakness of the diaphragm and expiratory muscles with the severity of the patients’ condition. Expiratory and inspiratory muscle performance indicators can be used as a predictor of the length of hospital stay and COVID-19 outcomes.
Keywords: Covid-19, acute phase, spirometry, respiratory pump, maximum inspiratory pressure (MIP), maximum exspiratory pressure (MEP), predictor, severity, outcomes.

References

1. Xu P, Sun G-D, Li Z-Z. Clinical characteristics of two human-to-human transmitted coronaviruses: Corona Virus Disease 2019 vs. Middle East Respiratory Syndrome Coronavirus. Eur Rev Med Pharmacol Sci. 2020 May;24(10):5797-809. doi: http://dx.doi.org/10.26355/eurrev_202005_21374
2. Mao L, Wang M, Chen S, He Q, Chang J, Hong C, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: A retrospective case series study. SSRN Electron. J. 2020 Jan. doi: http://dx.doi.org/10.2139/ssrn.3544840
3. Murkamilov IT, Aitbaev KA, Kudaibergenova IO, Fomin VV, Murkamilova ZhA, Yusupov FA. Damage of the Muscle System in Covid-19. Russ Arch Int Med. 2021;11(2):146-53. doi: http://dx.doi.org/10.20514/2226-6704-2021-11-2-146-153
4. Aschman T, Schneider J, Greuel S, Meinhardt J, Streit S, Goebel H-H, et al. Association between SARS-CoV-2 infection and immune-mediated myopathy in patients who have died. JAMA Neurol. 2021 Aug;78(8):948-60. doi: http://dx.doi.org/10.1001/jamaneurol.2021.2004
5. Medina-Hernández EO, Pérez-Navarro LM, Hernández-Ruiz J, Villalobos-Osnaya A, Hernández-Medel ML, Casillas-Suárez C, et al. Changes in lactate dehydrogenase on admission throughout the COVID-19 pandemic and possible impacts on prognostic capability. Biomark Med. 2022 Oct;16(14):1019-28. doi: http://dx.doi.org/10.2217/bmm-2022-0364
6. Panko ES. Current indices of external respiratory function in predicting the course of the acute phase of COVID-19. Zhurn Infektologii. 2023;15(3):115. (In Russ.)
7. Severin R, Arena R, Lavie CJ, Bond S, Phillips SA. Respiratory Muscle Performance Screening for Infectious Disease Management Following COVID-19: ahighly pressurized situation. Am J Med. 2020 Sep;133(9):1025-32. doi: http://dx.doi.org/10.1016/j.amjmed.2020.04.003
8. Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests. II. Maximal respiratory pressures and voluntary ventilation. Braz J Med Biol Res. 1999 Jun;32(6):719-27. doi: http://dx.doi.org/10.1590/s0100-879x1999000600007
9. Combret Y, Prieur G, Hilfiker R, Gravier F-E, Smondack P, Contal O, et al. The relationship between maximal expiratory pressure values and critical outcomes in mechanically ventilated patients: a post hoc analysis of an observational study. Ann Intensive Care. 2021 Jan;11(1):8. doi: http://dx.doi.org/10.1186/s13613-020-00791-4
10. Severin R, Franz CK, Farr E, Meirelles C, Arena R, Phillips SA, et al. The effects of COVID-19 on respiratory muscle performance: making the case for respiratory muscle testing and training. Eur Respir Rev. 2022 Oct;31(166):220006. doi: http://dx.doi.org/10.1183/16000617.0006-2022
11. Paliwal VK, Garg RK, Gupta A, Tejan N. Neuromuscular presentations in patients with COVID-19. Neurol Sci. 2020 Nov;41(11):3039-56. doi: http://dx.doi.org/10.1007/s10072-020-04708-8
12. Ferrandi PJ, Alway SE, Mohamed JS. The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. J Appl Physiol (1985). 2020 Oct 1;129(4):864-7. doi: http://dx.doi.org/10.1152/japplphysiol.00321.2020
13. VanderVeen BN, Fix DK, Montalvo RN, Counts BR, Smuder AJ, Murphy EA, et al. The regulation of skeletal muscle fatigability and mitochondrial function by chronically elevated interleukin-6. Exp Physiol. 2019 Mar;104(3):385-97. doi: http://dx.doi.org/10.1113/EP087429
14. Silva CC, Bichara CNC, Carneiro FRO, da Cunha Menezes Palacios VR, Van den Berg AVS, Quaresma JAS, et al. Muscle dysfunction in the long coronavirus disease 2019 syndrome: Pathogenesis and clinical approach. Rev Med Virol. 2022 Nov;32(6):e2355. doi: http://dx.doi.org/10.1002/rmv.2355
15. Huang Y, Tan C, Wu J, Chen M, Wang Z, Luo L, et al. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir Res. 2020 Jun;21(1):163. doi: http://dx.doi.org/10.1186/s12931-020-01429-6
16. Núñez-Seisdedos MN, Valcárcel-Linares D, Gómez-González MT, Lázaro-Navas I, López-González L, Pecos-Martín D, et al. Inspiratory muscle strength and function in mechanically ventilated COVID-19 survivors3 and 6 months after ICU discharge. ERJ Open Res. 2023 Jan;9(1):00329-2022. doi: http://dx.doi.org/10.1183/23120541.00329-2022
17. Albert SP, DiRocco J, Allen GB, Bates JHT, Lafollette R, Kubiak BD, et al. The role of time and pressure on alveolar recruitment. J Appl Physiol (1985). 2009 Mar;106(3):757-65. doi: http://dx.doi.org/10.1152/japplphysiol.90735.2008
18. Laveneziana P, Albuquerque A, Aliverti A, Babb T, Barreiro E, Dres M, et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur Respir J. 2019 Jun;53(6):1801214. doi: http://dx.doi.org/10.1183/13993003.01214-2018
19. Archer SL, Sharp WW, Weir EK. Differentiating COVID-19 Pneumonia From Acute Respiratory Distress Syndrome and High Altitude Pulmonary Edema: Therapeutic Implications. Circulation. 2020 Jul;142(2):101-4. doi: http://dx.doi.org/10.1161/CIRCULATIONAHA.120.047915
20. Pitscheider L, Karolyi M, Burkert FR, Helbok R, Wanschitz JV, Horlings C, et al. Muscle involvement in SARS-CoV-2 infection. Eur J Neurol. 2021 Oct;28(10):3411-3417. doi: http://dx.doi.org/10.1111/ene.14564

Submitted 09.04.2024
Accepted 14.06.2024

Information about authors:
E.S. Panko – postgraduate of the Chair of Infectious Diseases & Childhood Infections of Belarusian Medical Academy of Postgraduate Education, Belarusian State Medical University; pediatrician of the 1st infectious diseases department, Brest Regional Clinical Hospital, http://orcid.org/0000-0003-0610-1948
e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Ekaterina S. Panko;
S.V. Zhavoronok – Doctor of Medical Sciences, professor of the Chair of Infectious Diseases, Belarusian State Medical University, http://orcid.org/0000-0001-9727-1103
A.M. Solovchuk – postgraduate of the Chair of Intelligent Information Technologies, Brest State Technical University;
S.V. Panko – Doctor of Medical Sciences, professor, head of the Chair of Anatomy, Physiology & Human Safety, Brest State University named after A.S. Pushkin; thoracic surgeon of the thoracic surgery department, Brest Regional Clinical Hospital, http://orcid.org/0000-0001-8665-2832

Поиск по сайту