Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2024.5.17

T.L. Aladyeva, R.E. Lis
Peroxisomes in the nervous tissue
Grodno State Medical University, Grodno, Republic of Belarus

Vestnik VGMU. 2024;23(5):17-30.

Abstract.
Peroxisomes are single-membrane organelles that participate in a wide range of important metabolic processes in the cell (alpha- and β-oxidation of long-chain fatty acids; synthesis of bile acids, detoxification of glyoxylate in mammals; formation and inactivation of reactive oxygen species, in particular hydrogen peroxide; synthesis of plasmalogens, which are crucial in the formation and functioning myelin; oxidation of D-amino acids), due to the content of numerous enzymes. In addition, peroxisomes also perform important defensive functions against pathogens and viruses, emphasizing their broader importance in human health and diseases.
Violation of peroxisome biogenesis, leading to loss or disruption of peroxisomal functions resulted from genes mutations of encoding peroxins, peroxisomal enzymes or transporter proteins, leads to serious metabolic disorders in humans, in particular, to characteristic lesions of the central nervous system, in the form of severe neurological disorders associated with impaired brain development, demyelination, loss of integrity processes of neurons, neuroinflammation or other neurodegenerative processes. Paroxysmal dysfunction is also considered one of the causes of Alzheimer’s disease and multiple sclerosis.
The objective of this review is to systematize current data on biogenesis, regulatory and metabolic functions of peroxisomes, as well as pexophagy in the cells of the nervous system.
Keywords: peroxisomes, pexophagy, neurons, brain, nervous system.

References

1. Imanaka T. Biogenesis, the function of peroxisomes, and their role in genetic disease: with a focus on the ABC transporter. Yakugaku Zasshi. 2018;138(8):1067-1083. doi: http://dx.doi.org/10.1248/yakushi.18-00023
2. Fransen M, Nordgren M, Wang B, Apanasets O. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta. 2012 Sep;1822(9):1363-1373. doi: http://dx.doi.org/10.1016/j.bbadis.2011.12.001
3. Berger J, Dorninger F, Forss-Petter S, Kunze M. Peroxisomes in brain development and function. Biochim Biophys Acta. 2016 May;1863(5):934-955. doi: http://dx.doi.org/10.1016/j.bbamcr.2015.12.005
4. Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev. 2023 Jan;103(1):957-1024. doi: http://dx.doi.org/10.1152/physrev.00051.2021
5. Kumar R, Islinger M, Worthy H, Carmichael R, Schrader M. The peroxisome: an update on mysteries 3.0. Histochem Cell Biol. 2024 Feb;161(2):99-132. doi: http://dx.doi.org/10.1007/s00418-023-02259-5
6. Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. Peroxisome biogenesis disorders. Biochim Biophys Acta. 2006 Dec;1763(12):1733-1748. doi: http://dx.doi.org/10.1016/j.bbamcr.2006.09.010
7. Di Cara F, Sheshachalam A, Braverman NE, Rachubinski RA, Simmonds AJ. Peroxisome-mediated metabolism is required for immune response to microbial infection. Immunity. 2017 Jul;47(1):93-106.e7. doi: http://dx.doi.org/10.1016/j.immuni.2017.06.016
8. Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell. 2010 May;141(4):668-681. doi: http://dx.doi.org/10.1016/j.cell.2010.04.018
9. Hjorth E, Freund-Levi Y. Immunomodulation of microglia by docosahexaenoic acid and eicosapentaenoic acid. Curr Opin Clin Nutr Metab Care. 2012 Mar;15(2):134-143. doi: http://dx.doi.org/10.1097/MCO.0b013e32835017cc
10. Van Veldhoven PP. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res. 2010 Oct;51(10):2863-2895. doi: http://dx.doi.org/10.1194/jlr.R005959
11. Oller do Nascimento CM, Oyama LM. Long-chain polyunsaturated fatty acids essential for brain growth and development. Nutrition. 2003 Jan;19(1):66. doi: http://dx.doi.org/10.1016/s0899-9007(02)00955-3
12. Imoto Y, Kuroiwa H, Yoshida Y, Ohnuma M, Fujiwara T, Yoshida M, et al. Single-membrane-bounded peroxisome division revealed by isolation of dynamin-based machinery. Proc Natl Acad Sci U S A. 2013 Jun;110(23):9583-9588. doi: http://dx.doi.org/10.1073/pnas.1303483110
13. Vamecq J, Cherkaoui-Malki M, Andreoletti P, Latruffe N. The human peroxisome in health and disease: the story of an oddity becoming a vital organelle. Biochimie. 2014 Mar:98:4-15. doi: http://dx.doi.org/10.1016/j.biochi.2013.09.019
14. Gabaldon T. Peroxisome diversity and evolution. Philos Trans R Soc Lond B Biol Sci. 2010 Mar;365(1541):765-773. doi: http://dx.doi.org/10.1098/rstb.2009.0240
15. De Duve C, Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323-357. doi: http://dx.doi.org/10.1152/physrev.1966.46.2.323
16. Galiani S, Eggeling C, Reglinski K. Super-resolution microscopy and studieческих s of peroxisomes. Biol Chem. 2023 Jan;404(2-3):87-106. doi: http://dx.doi.org/10.1515/hsz-2022-0314
17. Kocherlakota S, Swinkels D, Van Veldhoven PP, Baes M. Mouse models to study peroxisomal functions and disorders: overview, caveats, and recommendations. Methods Mol Biol. 2023:2643:469-500. doi: http://dx.doi.org/10.1007/978-1-0716-3048-8_34
18. Wanders RJ, Waterham HR, Ferdinandusse S. Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front Cell Dev Biol. 2016 Jan:3:83. doi: http://dx.doi.org/10.3389/fcell.2015.00083
19. Herzog K, Pras-Raves ML, Ferdinandusse S, Vervaart MAT, Luyf ACM, van Kampen AHC, et al. Functional characterisation of peroxisomal beta-oxidation disorders in fibroblasts using lipidomics. J Inherit Metab Dis. 2018 May;41(3):479-487. doi: http://dx.doi.org/10.1007/s10545-017-0076-9
20. Petroni A, Bertagnolio B, La Spada P, Blasevich M, Papini N, Govoni S, et al. The beta-oxidation of arachidonic acid and the synthesis of docosahexaenoic acid are selectively and consistently altered in skin fibroblasts from three Zellweger patients versus X-adrenoleukodystrophy, Alzheimer and control subjects. Neurosci Lett. 1998 Jul;250(3):145-148. doi: http://dx.doi.org/10.1016/s0304-3940(98)00467-4
21. Verhoeven NM, Roe DS, Kok RM, Wanders RJ, Jakobs C, Roe CR. Phytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts. J Lipid Res. 1998 Jan;39(1):66-74.
22. Ranea-Robles P, Chen H, Stauffer B, Yu C, Bhattacharya D, Friedman SL, Puchowicz M, et al. The peroxisomal transporterABCD3 plays a major role in hepatic dicarboxylic fatty acid metabolism and lipid homeostasis. J Inherit Metab Dis. 2021 Nov;44(6):1419-1433. doi: http://dx.doi.org/10.1002/jimd.12440
23. Brown AJ, Glish GL, McBay EH, Snyder F. Alkyldihydroxyacetonephosphate synthase mechanism: 18O studies of fatty acid release from acyldihydroxyacetone phosphate. Biochemistry. 1985 Dec;24(27):8012-8016. doi: http://dx.doi.org/10.1021/bi00348a026
24. Milliner DS, Harris PC, Sas DJ, Cogal AG, Lieske JC. Primary hyperoxaluria type 1. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al. (eds.) GeneReviews. Seattle (WA): University of Washington, Seattle, 1993. https://pubmed.ncbi.nlm.nih.gov/20301295/
25. Antonenkov VD, Grunau S, Ohlmeier S, Hiltunen JK. Peroxisomes are oxidative organelles. Antioxid Redox Signal. 2010 Aug;13(4):525-537. doi: http://dx.doi.org/10.1089/ars.2009.2996
26. Dowling DK, Simmons LW. Reactive oxygen species as universal constraints in life-history evolution. Proc Biol Sci. 2009 May;276(1663):1737-1745. doi: http://dx.doi.org/10.1098/rspb.2008.1791
27. Ferreira MJ, Rodrigues TA, Pedrosa AG, Gales L, Salvador A, Francisco T, et al. The mammalian peroxisomal membrane is permeable to both GSH and GSSG - Implications for intraperoxisomal redox homeostasis. Redox Biol. 2023 Jul:63:102764. doi: http://dx.doi.org/10.1016/j.redox.2023.102764
28. Schrader M, Bonekamp NA, Islinger M. Fission and proliferation of peroxisomes. Biochim Biophys Acta. 2012 Sep;1822(9):1343-1357. doi: http://dx.doi.org/10.1016/j.bbadis.2011.12.014
29. Waterham HR, Ebberink MS. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta. 2012 Sep;1822(9):1430-1441. doi: http://dx.doi.org/10.1016/j.bbadis.2012.04.006
30. Bagattin A, Hugendubler L, Mueller E. Transcriptional coactivator PGC-1α promotes peroxisomal remodeling and biogenesis. Proc Natl Acad Sci U S A. 2010 Nov;107(47):20376-20381. doi: http://dx.doi.org/10.1073/pnas.1009176107
31. Jones JM, Morrell JC, Gould SJ. PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. J Cell Biol. 2004 Jan;164(1):57-67. doi: http://dx.doi.org/10.1083/jcb.200304111
32. Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, Sá-Miranda C, et al. Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J Biol Chem. 2007 Oct;282(43):31267-31272. doi: http://dx.doi.org/10.1074/jbc.M706325200
33. Reuter M, Kooshapur H, Suda JG, Neuhaus GA, Brühl L, et al. Competitive Microtubule Binding of PEX14 Coordinates Peroxisomal Protein Import and Motility. J Mol Biol. 2021 Mar;433(5):166765. doi: http://dx.doi.org/10.1016/j.jmb.2020.166765
34. Deosaran E, Larsen KB, Hua R, Sargent G, Wang Y, Kim S, et al. NBR1 acts as an autophagy receptor for peroxisomes. J Cell Sci. 2013 Feb;126(Pt 4):939-952. doi: http://dx.doi.org/10.1242/jcs.114819
35. Li H, Lismont C, Revenco I, Hussein MA, Costa CF, Fransen M. The peroxisome-autophagy redox connection: a double-edged sword? Front Cell Dev Biol. 2021 Dec:9:814047. doi: http://dx.doi.org/10.3389/fcell.2021.814047
36. Demers ND, Riccio V, Jo DS, Bhandari S, Law KB, Liao W, et al. PEX13 prevents pexophagy by regulating ubiquitinated PEX5 and peroxisomal ROS. Autophagy. 2023 Jun;19(6):1781-1802. doi: http://dx.doi.org/10.1080/15548627.2022.2160566
37. Evans CS, Holzbaur ELF. Quality control in neurons: mitophagy and other selective autophagy mechanisms. J Mol Biol. 2020 Jan;432(1):240-260. doi: http://dx.doi.org/10.1016/j.jmb.2019.06.031
38. Kulkarni A, Dong A, Kulkarni VV, Chen J, Laxton O, Anand A, et al. Differential regulation of autophagy during metabolic stress in astrocytes and neurons. Autophagy. 2020 Sep;16(9):1651-1667. doi: http://dx.doi.org/10.1080/15548627.2019.1703354
39. Kumar R, Islinger M, Worthy H, Carmichael R, Schrader M. The peroxisome: an update on mysteries 3.0. Histochem Cell Biol. 2024 Feb;161(2):99-132. doi: http://dx.doi.org/10.1007/s00418-023-02259-5
40. Hua R, Cheng D, Coyaud É, Freeman S, di Pietro E, Wang Y, et al. VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. J Cell Biol. 2017 Feb;216(2):367-377. doi: http://dx.doi.org/10.1083/jcb.201608128
41. Chu BB, Liao YC, Qi W, Xie C, Du X, Wang J, et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell. 2015 Apr;161(2):291-306. doi: http://dx.doi.org/10.1016/j.cell.2015.02.019
42. Chang C. L., Weigel A., Ioannou M. S., Pasolli H. A., Xu C. S., Peale D. R., et al. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J Cell Biol. 2019 Aug;218(8):2583-2599. doi: http://dx.doi.org/10.1083/jcb.201902061
43. Holtzman E, Teichberg S, Abrahams SJ, Citkowitz E, Crain SM, Kawai N, et al. Notes on synaptic vesicles and related structures, endoplasmic reticulum, lysosomes and peroxisomes in nervous tissue and the adrenal medulla. Histochem Cytochem. 1973 Apr;21(4):349-385. doi: http://dx.doi.org/10.1177/21.4.349
44. Arnold G, Holtzman E. Microperoxisomes in the central nervous system of the postnatal rat. Brain Res. 1978 Oct;155(1):1-17. doi: http://dx.doi.org/10.1016/0006-8993(78)90300-1
45. Arnold G, Liscum L, Holtzman E. Ultrastructural localization of D-amino acid oxidase in microperoxisomes of the rat nervous system. J Histochem Cytochem. 1979 Mar;27(3):735-745. doi: http://dx.doi.org/10.1177/27.3.39097
46. Nagase T, Shimozawa N, Takemoto Y, Suzuki Y, Komori M, Kondo N. Peroxisomal localization in the developing mouse cerebellum: implications for neuronal abnormalities related to deficiencies in peroxisomes. Biochim Biophys Acta. 2004 Mar;1671(1-3):26-33. doi: http://dx.doi.org/10.1016/j.bbagen.2004.01.004
47. Adamo AM, Aloise PA, Pasquini JM. A possible relationship between concentration of microperoxisomes and myelination. Int J Dev Neurosci. 1986;4(6):513-517. doi: http://dx.doi.org/10.1016/0736-5748(86)90003-1
48. Van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC. Optogenetic control of organelle transport and positioning. Nature. 2015 Feb;518(7537):111-114. doi: http://dx.doi.org/10.1038/nature14128
49. Schollenberger L, Gronemeyer T, Huber CM, Lay D, Wiese S, Meyer HE, et al. RhoA regulates peroxisome association to microtubules and the actin cytoskeleton. PLoS One. 2010 Nov;5(11):e13886. doi: http://dx.doi.org/10.1371/journal.pone.0013886
50. Kong J, Ji Y, Jeon YG, Han JS, Han KH, Lee JH, et al. Spatiotemporal contact between peroxisomes and lipid droplets regulates fastinginduced lipolysis via PEX5. Nat Commun. 2020 Jan;11:578. doi: http://dx.doi.org/10.1038/s4146 7-019-14176 -0
51. Rahim RS, St John JA, Crane DI, Meedeniya AC. Impaired neurogenesis and associated gliosis in mouse brain with PEX13 deficiency. Mol Cell Neurosci. 2018 Apr:88:16-32. doi: http://dx.doi.org/10.1016/j.mcn.2017.11.015
52. Hulshagen L, Krysko O, Bottelbergs A, Huyghe S, Klein R, Van Veldhoven PP, et al. Absence of functional peroxisomes from mouse CNS causes dysmyelination and axon degeneration. J Neurosci. 2008 Apr;28(15):4015-4027. doi: http://dx.doi.org/10.1523/JNEUROSCI.4968-07.2008
53. Uzor NE, McCullough LD, Tsvetkov AS. Peroxisomal dysfunction in neurological diseases and brain aging. Front Cell Neurosci. 2020 Mar:14:44. doi: http://dx.doi.org/10.3389/fncel.2020.00044
54. Mi J, Kirchner E, Cristobal S. Quantitative proteomic comparison of mouse peroxisomes from liver and kidney. Proteomics. 2007 Jun;7(11):1916-1928. doi: http://dx.doi.org/10.1002/pmic.200600638
55. Gray E, Rice C, Hares K, Redondo J, Kemp K, Williams M, et al. Reductions in neuronal peroxisomes in multiple sclerosis grey matter. Mult Scler. 2014 May;20(6):651-659. doi: http://dx.doi.org/10.1177/1352458513505691
56. Gärtner J, Moser H, Valle D. Mutations in the 70K peroxisomal membrane protein gene in Zellweger syndrome. Nat Genet. 1992 Apr;1(1):16-23. doi: http://dx.doi.org/10.1038/ng0492-16
57. Gould SJ, Raymond GVD. The peroxisome biogenesis disorders. In: Scriver CR, Beaudet AL, Valle D, Sly WS. (eds.) The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 2001. P. 3181-3217.
58. Bams-Mengerink AM, Majoie CB, Duran M, Wanders RJ, Van HJ, Scheurer CD, et al. MRI of the brain and cervical spinal cord in rhizomelic chondrodysplasia punctuate. Neurology. 2006 Mar 28;66(6):798-803. doi: http://dx.doi.org/10.1212/01.wnl.0000205594.34647.d0
59. Powers JM, DeCiero DP, Ito M., Moser AB, Moser HW. Adrenomyeloneuropathy: a neuropathologic review featuring its noninflammatory myelopathy. J Neuropathol Exp Neurol. 2000 Feb;59(2):89-102. doi: http://dx.doi.org/10.1093/jnen/59.2.89

Submitted 07.06.2023
Accepted 18.10.2024

Information about authors:
T.L. Aladyeva – lecturer of the Chair of Histology, Cytology & Embryology, Grodno State Medical University;
R.E. Lis – Candidate of Biological Sciences, associate professor of the Chair of Histology, Cytology & Embryology, Grodno State Medical University, e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Ruslan E. Lis.

Поиск по сайту