Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2024.6.19

O.Y. Poluliakh
Effects of viral infections on the brain function
Institute of Physiology of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus

Vestnik VGMU. 2024;23(6):19-30.

Abstract.
The results of epidemiological studies indicate an increase in mental and neurodevelopmental disorders during viral pandemics, which suggests a possible role of viruses in the etiology of these disorders.
Objectives. To elucidate the role of viral infections in the pathogenesis of neuropsychiatric disorders on the basis of current literature data.
This review considers a number of issues, including nervous system diseases initiated by viral infection; interactions between the immune system and the brain; and the impact of viral infections on neurotransmission.
Disorders of central nervous system functions develop both through direct exposure of the virus to the brain and through the immune system, including activation of toll-like receptors with subsequent production of pro-inflammatory cytokines and impaired neurotransmitter interaction.
Keywords: viral infections, neuropsychiatric disorders, immune system, cytokines, neurotransmitters, neurodevelopment.

Acknowledgments. The author expresses sincere gratitude to her scientific adviser, Mityukova T.A., Candidate of Medical Sciences, associate professor, Chief Research Scientist of Institute of Physiology of the National Academy of Sciences of Belarus for help in writing and revising this article.

The sources of funding. The task is “To study the state of mental health, the brain functional state, the pro-inflammatory and autoimmune status of children who have had COVID infection, and to identify markers of the CNS disorders associated with COVID infection” within the framework of the State Program of Scientific Research “Translational Medicine” for 2021-2025, the subprogram “Experimental Medicine”.

References

1. Sathyanarayanan A, Mehta D. Linking Infections to Mental Disorders via Genetics. Biol Psychiatry. 2022 Jul;92(4):256-257. doi: http://dx.doi.org/10.1016/j.biopsych.2022.06.001
2. Tochigi M, Okazaki Y, Kato N, Sasaki T. What causes seasonality of birth in schizophrenia? Neurosci Res. 2004 Jan;48(1):1-11. doi: http://dx.doi.org/10.1016/j.neures.2003.09.002
3. Green MJ, Watkeys OJ, Whitten T, Thomas C, Kariuki M, Dean K, et al. Increased incidence of childhood mental disorders following exposure to early life infection. Brain Behav Immun. 2021 Oct:97:376-382. doi: http://dx.doi.org/10.1016/j.bbi.2021.08.009
4. Kulaga SS, Miller CWT. Viral respiratory infections and psychosis: A review of the literature and the implications of COVID-19. Neurosci Biobehav Rev. 2021 Aug:127:520-530. doi: http://dx.doi.org/10.1016/j.neubiorev.2021.05.008
5. Khandaker GM, Zimbron J, Dalman C, Lewis G, Jones PB. Childhood infection and adult schizophrenia: a meta-analysis of population-based studies. Schizophr Res. 2012 Aug;139(1-3):161-168. doi: http://dx.doi.org/10.1016/j.schres.2012.05.023
6. Blomström Å, Karlsson H, Svensson A, Frisell T, Lee BK, Dal H, et al. Hospital Admission With Infection During Childhood and Risk for Psychotic Illness–A Population-based Cohort Study. Schizophr Bull. 2014 Nov;40(6):1518-1525. doi: http://dx.doi.org/10.1093/schbul/sbt195
7. van den Pol, A. N. Viral infection leading to brain dysfunction: more prevalent than appreciated? Neuron. 2009 Oct;64(1):17-20. doi: http://dx.doi.org/10.1016/j.neuron.2009.09.023
8. Bale, J. F. Fetal Infections and Brain Development. Clin Perinatol. 2009 Sep;36(3):639-653. doi: http://dx.doi.org/10.1016/j.clp.2009.06.005
9. Tomonaga, K. Virus-induced neurobehavioral disorders: mechanisms and implications. Trends Mol Med. 2004 Feb;10(2):71-77. doi: http://dx.doi.org/10.1016/j.molmed.2003.12.001
10. Gordon-Lipkin, E. Prenatal cytomegalovirus, rubella, and Zika virus infections associated with developmental disabilities: past, present, and future. Dev Med Child Neurol. 2021 Feb;63(2):135-143. doi: http://dx.doi.org/10.1111/dmcn.14682
11. Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci. 2003 Jan;23(1):297-302. doi: http://dx.doi.org/10.1523/JNEUROSCI.23-01-00297.2003
12. Elgueta D, Murgas P, Riquelme E, Yang G, Cancino GI. Consequences of viral infection and cytokine production during pregnancy on brain development in offspring. Front Immunol. 2022 Apr:13:816619. doi: http://dx.doi.org/10.3389/fimmu.2022.816619
13. Edlow AG, Li JZ, Collier A-RY, Atyeo C, James KE, Boatin AA, et al. Assessment of maternal and neonatal SARS-CoV-2 viral load, transplacental antibody transfer, and placental pathology in pregnancies during the COVID-19 pandemic. JAMA Netw Open. 2020 Dec;3(12):e2030455. doi: http://dx.doi.org/10.1001/jamanetworkopen.2020.30455
14. Lamouroux A, Attie-Bitach T, Martinovic J, Leruez-Ville M, Ville Y. Evidence for and against vertical transmission for severe acute respiratory syndrome coronavirus 2. Am J Obstet Gynecol. 2020 Jul;223(1):91.e1-91.e4. doi: http://dx.doi.org/10.1016/j.ajog.2020.04.039
15. Vivanti AJ, Vauloup-Fellous C, Prevot S, Zupan V, Suffee C, Do Cao J, et al. Transplacental transmission of SARS-CoV-2 infection. Nat Commun. 2020 Jul;11(1):3572. doi: http://dx.doi.org/10.1038/s41467-020-17436-6
16. Jakhmola S, Indari O, Chatterjee S, Jha HC. SARS-CoV-2, an underestimated pathogen of the nervous system. SN Compr Clin Med. 2020;2(11):2137-2146. doi: http://dx.doi.org/10.1007/s42399-020-00522-7
17. Wang L, Sievert D, Clark AE, Lee S, Federman H, Gastfriend BD, et al. A human three-dimensional neural-perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nat Med. 2021 Sep;27(9):1600-1606. doi: http://dx.doi.org/10.1038/s41591-021-01443-1
18. McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007 Jan;81(2):813-821. doi: http://dx.doi.org/10.1128/JVI.02012-06
19. Prins JR, Eskandar S, Eggen BJL, Scherjon SA. Microglia, the missing link in maternal immune activation and fetal neurodevelopment; and a possible link in preeclampsia and disturbed neurodevelopment? J Reprod Immunol. 2018 Apr:126:18-22. doi: http://dx.doi.org/10.1016/j.jri.2018.01.004
20. Su Y, Lian J, Hodgson J, Zhang W, Deng C. Prenatal Poly I:C challenge affects behaviors and neurotransmission via elevated neuroinflammation responses in female juvenile rats. Int J Neuropsychopharmacol. 2022 Feb;25(2):160-171. doi: http://dx.doi.org/10.1093/ijnp/pyab087
21. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006 May;13(5):816-825. doi: http://dx.doi.org/10.1038/sj.cdd.4401850
22. Ryabova LV, Nikonova SE. Determination of cytokine levels in bronchoalveolar lavage fluid in patients with chronic obstructive pulmonary disease. Ros Immunol Zhurn. 2019;22(2-1):506-508. (In Russ.)
23. Kennedy RH, Silver R. Neuroimmune Signaling: Cytokines and the CNS. In: Springer; Pfaff DW, Volkow ND, eds. Neuroscience in the 21st сentury. New York, NY; 2016. P. 1-41.
24. Besedovsky HO, del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev. 1996 Feb;17(1):64-102. doi: http://dx.doi.org/10.1210/edrv-17-1-64
25. Marisa R, R. Reesha P, Michal B. Cytokines in the CNS. Handb Exp Pharmacol. 2018;248:397-431. doi: http://dx.doi.org/10.1007/164_2017_77
26. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, et al. Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci. 2003 Sep;23(25):8692-8700. doi: http://dx.doi.org/10.1523/JNEUROSCI.23-25-08692.2003
27. Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun. 2008 Aug;22(6):797-803. doi: http://dx.doi.org/10.1016/j.bbi.2008.03.009
28. Kummer KK, Zeidler M, Kalpachidou T, Kress M. Role of IL-6 in the regulation of neuronal development, survival and function. Cytokine. 2021 Aug:144:155582. doi: http://dx.doi.org/10.1016/j.cyto.2021.155582
29. Ross FM, Allan SM, Rothwell NJ, Verkhratsky A. A dual role for interleukin-1 in LTP in mouse hippocampal slices. J Neuroimmunol. 2003 Nov;144(1-2):61-67. doi: http://dx.doi.org/10.1016/j.jneuroim.2003.08.030
30. Gonzalez Caldito N. Role of tumor necrosis factor-alpha in the central nervous system: a focus on autoimmune disorders. Front Immunol. 2023 Jul:14:1213448. doi: http://dx.doi.org/10.3389/fimmu.2023.1213448
31. Probert L. TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience. 2015 Aug:302:2-22. doi: http://dx.doi.org/10.1016/j.neuroscience.2015.06.038
32. Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPA receptor and GABA receptor trafficking by Tumor necrosis factor-α. J Neurosci. 2005 Mar;25(12):3219-3228. doi: http://dx.doi.org/10.1523/JNEUROSCI.4486-04.2005
33. Golan H, Levav T, Mendelsohn A, Huleihel M. Involvement of tumor necrosis factor alpha in hippocampal development and function. Cereb Cortex. 2004 Jan;14(1):97-105. doi: http://dx.doi.org/10.1093/cercor/bhg108
34. Bohmwald K, Andrade CA, Kalergis AM. Contribution of pro-Inflammatory molecules induced by respiratory virus infections to neurological disorders. Pharmaceuticals (Basel). 2021 Apr;14(4):340. doi: http://dx.doi.org/10.3390/ph14040340
35. Prieto GA, Tong L, Smith ED, Cotman CW. TNFα and IL-1β but not IL-18 suppresses hippocampal long-term potentiation directly at the synapse. Neurochem Res. 2019 Jan;44(1):49-60. doi: http://dx.doi.org/10.1007/s11064-018-2517-8
36. Tong L, Prieto GA, Cotman CW. IL-1β suppresses cLTP-induced surface expression of GluA1 and actin polymerization via ceramide-mediated Src activation. J Neuroinflammation. 2018 Apr;15(1):127. doi: http://dx.doi.org/10.1186/s12974-018-1158-9
37. Li L, Walker TL, Zhang Y, Mackay EW, Bartlett PF. Endogenous Interferon γ Directly Regulates Neural Precursors in the Non-Inflammatory Brain. J Neurosci. 2010 Jul;30(27):9038-9050. doi: http://dx.doi.org/10.1523/JNEUROSCI.5691-09.2010
38. Monteiro S, Ferreira FM, Pinto V, Roque S, Morais M, de Sá-Calçada D, et al. Absence of IFNγ promotes hippocampal plasticity and enhances cognitive performance. Transl Psychiatry. 2016 Jan;6(1):e707. doi: http://dx.doi.org/10.1038/tp.2015.194
39. Bellingacci L, Canonichesi J, Mancini A, Parnetti L, Di Filippo M. Cytokines, synaptic plasticity and network dynamics: a matter of balance. Neural Regen Res. 2023 Apr;18(12):2569-2572. doi: http://dx.doi.org/10.4103/1673-5374.371344
40. Hosseini S, Wilk E, Michaelsen-Preusse K, Gerhauser I, Baumgärtner W, Geffers R, et al. Long-term neuroinflammation induced by influenza A virus infection and the impact on hippocampal neuron morphology and function. J Neurosci. 2018 Mar;38(12):3060-3080. doi: http://dx.doi.org/10.1523/JNEUROSCI.1740-17.2018
41. Gogoleva VS, Drutskaya MS, Atretkhany KSN. Microglia in central nervous system homeostasis and neuroinflammation. Molekulyar Biologiya. 2019;53(5):790-798. (In Russ.). doi: http://dx.doi.org/10.1134/S0026898419050057
42. Frade JM, Barde YA. Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron. 1998 Jan;20(1):35-41. doi: http://dx.doi.org/10.1016/s0896-6273(00)80432-8
43. Sedel F, Béchade C, Vyas S, Triller A. Macrophage-derived tumor necrosis factor alpha, an early developmental signal for motoneuron death. J Neurosci. 2004 Mar;24(9):2236-2246. doi: http://dx.doi.org/10.1523/JNEUROSCI.4464-03.2004
44. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012 May;74(4):691-705. doi: http://dx.doi.org/10.1016/j.neuron.2012.03.026
45. Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019 Mar;22(3):374-385. doi: http://dx.doi.org/10.1038/s41593-018-0334-7
46. Long-Smith CM, Collins L, Toulouse A, Sullivan AM, Nolan YM. Interleukin-1β contributes to dopaminergic neuronal death induced by lipopolysaccharide-stimulated rat glia in vitro. J Neuroimmunol. 2010 Sep;226(1-2):20-26. doi: http://dx.doi.org/10.1016/j.jneuroim.2010.05.030
47. Wang J, Chen Z, Walston JD, Gao P, Gao M, Leng SX. Interferon-γ potentiates α-synuclein-induced neurotoxicity linked to toll-like receptor 2 and 3 and tumor necrosis factor-α in murine astrocytes. Mol Neurobiol. 2019 Nov;56(11):7664-7679. doi: http://dx.doi.org/10.1007/s12035-019-1567-5
48. Tomonaga K. Virus-induced neurobehavioral disorders: mechanisms and implications. Trends Mol Med. 2004 Feb;10(2):71-77. doi: http://dx.doi.org/10.1016/j.molmed.2003.12.001
49. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine Targets in the Brain: Impact on Neurotransmitters and Neurocircuits. Depress Anxiety. 2013 Apr;30(4):297-306. doi: http://dx.doi.org/10.1002/da.22084
50. Dunn AJ, Wang J, Ando T. Effects of cytokines on cerebral neurotransmission. Comparison with the effects of stress. Adv Exp Med Biol. 1999:461:117-127. doi: http://dx.doi.org/10.1007/978-0-585-37970-8_8
51. Dunn AJ. Cytokine activation of the HPA axis. Ann N Y Acad Sci. 2000:917:608-617. doi: http://dx.doi.org/10.1111/j.1749-6632.2000.tb05426.x
52. Zhu C-B, Blakely RD, Hewlett WA. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology. 2006 Oct;31(10):2121-2131. doi: http://dx.doi.org/10.1038/sj.npp.1301029
53. Tilleux S, Hermans E. Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res. 2007 Aug;85(10):2059-2070. doi: http://dx.doi.org/10.1002/jnr.21325
54. Ida T, Hara M, Nakamura Y, Kozaki S, Tsunoda S, Ihara H. Cytokine-induced enhancement of calcium-dependent glutamate release from astrocytes mediated by nitric oxide. Neurosci Lett. 2008 Feb;432(3):232-236. doi: http://dx.doi.org/10.1016/j.neulet.2007.12.047
55. Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K. L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation. J Neuroinflammation. 2012 Dec:9:275. doi: http://dx.doi.org/10.1186/1742-2094-9-275
56. Haroon E, Miller AH, Sanacora G. Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology. 2017 Jan;42(1):193-215. doi: http://dx.doi.org/10.1038/npp.2016.199
57. Mehta S, Kitchen I. Regional changes in 5-HT1A but not in 5-HT2A receptors in mouse brain after Semliki Forest virus infection: radioligand binding and autoradiographic studies. J Neurovirol. 1998 Dec;4(6):606-618. doi: http://dx.doi.org/10.3109/13550289809114227
58. Pletnikov MV, Rubin SA, Vasudevan K, Moran TH, Carbone KM. Developmental brain injury associated with abnormal play behavior in neonatallyBorna disease virus-infected Lewis rats: a model of autism. Behav Brain Res. 1999 Apr;100(1-2):43-50. doi: http://dx.doi.org/10.1016/s0166-4328(98)00111-9

Submitted 19.08.2024
Accepted 04.12.2024

Information about authors:
Olga Y. Poluliakh – Senior Researcher, Institute of Physiology of the National Academy of Sciences of Belarus,
https://orcid.org/0009-0004-9884-2122, e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра..

Поиск по сайту