Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2025.2.106

A.M. Tsygankov1, U.V. Yanchanka1, O.V. Gribovskaya2, V.P.Martinovich2 
Assessment of antiviral adaptive immune response of T cells
1Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus
2Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus

Vestnik VGMU. 2025;24(2):106-113.

Abstract.
This work presents a method of using synthetic 9-mer peptides designed to assess the adaptive immune response of T cells against influenza and SARS-CoV-2 viruses. After activation of specific lymphocytes (T-cells) of the peripheral blood with synthetic peptides identical in amino acid composition to the immunodominant epitopes of a particular virus, the concentration of gamma-interferon in the serum was determined. We used synthetic replica peptides from proteins of vaccine and influenza virus strains circulating in the Northern Hemisphere in 2023-2024 in the sample of 55 volunteers; and from Omicron-type SARS-CoV-2 coronavirus strain in the sample of 109 volunteers. It has been found out that gamma interferon concentrations of 4.91/10.21 pg/mL or higher may indicate the presence of specific T-lymphocytes in vaccinated and/or those who have had influenza and COVID-19, respectively. Lower concentrations of the investigated cytokine can be used as a selection criterion for vaccination.
Keywords: virus, influenza, synthetic peptide, adaptive immune response, vaccine, COVID–19, SARS-CoV-2,  T-lymphocytes.

References

1. Naykhin AN, Losev IV. Role of conserved and hypervariable immunodominant epitopes of internal proteins of influenza viruses and resulting cytotoxic T-cell immune response. Voprosy Virusologii. 2015;60(1):11-16. (In Russ.)
2. Kim SH, Españo E, Padasas BT, J. H. Son, J. Oh, R. J. Webby, et al. Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines. Immune Network. 2024 May;24(3):e19. doi: http://dx.doi.org/10.4110/in.2024.24.e19 
3. Coughlan L, Lambe T. Measuring cellular immunity to influenza: methods of detection, applications and challenges. Vaccines (Basel). 2015 Apr;3(2):293-319. doi: http://dx.doi.org/10.3390/vaccines3020293 
4. Moderbacher CR, Ramirez SI, Dan JM, A. Grifoni, K. M. Hastie, D. Weiskopf, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020 Nov;183(4):996-1012. doi: http://dx.doi.org/10.1016/j.cell.2020.09.038
5. Adamo S, Michler J, Zurbuchen Y. Signature of long-lived memory CD8+ T cells in acute SARS-CoV-2 infection. Nature. 2022 Feb;602(7895):148-155. doi: http://dx.doi.org/10.1038/s41586-021-04280-x 
6. Dan JM, Mateus J, Kato Y, K. M. Hastie, E. D. Yu, C. E. Faliti, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021 Feb;371(6529):eabf4063. doi: http://dx.doi.org/10.1126/science.abf4063 
7. Sette A, Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunological Reviews. 2022 Sep;310(1):27-46. doi: http://dx.doi.org/10.1111/imr.13089 
8. Koutsakos M, Reynaldi A, Lee WS. SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses. Immunity. 2023 Apr;56(4):879-892. doi: http://dx.doi.org/10.1016/j.immuni.2023.02.017 
9. Tsygankov AM, Yanchenko VV. Algorithm for in silico search of immunodominant epitopes for immunodiagnosis of vaccine-associated infections. Immunopatologiya Allergologiya Infektologiya. 2024;(1):33-36. (In Russ.). doi: http://dx.doi.org/10.14427/jipai.2024.1.33
10. Tsygankov AM, Gribovskaya OV, Martinovich VP, Golubovich VP, Khayrulina NV, Yanchenko VV. In vitro activation of leukocytes by short synthetic peptides as a step in the development of therapeutic and prophylactic vaccines against COVID-19. Izvestiya Natsional'noi Akademii Nauk Belarusi Seriya Meditsinskikh Nauk. 2024;21(1):53-61. (In Russ.). doi: http://dx.doi.org/10.29235/1814-6023-2024-21-1-53-61
11. Statistics Kingdom. ROC Calculator. 2024. https://www.statskingdom.com/roc-calculator.html [Accessed 25th March 2025].
12. Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment / J. N. Mandrekar. Journal Thoracic Oncology. 2010 Sep;5(9):1315-1316. doi: http://dx.doi.org/10.1097/JTO.0b013e3181ec173d

Submitted 19.11.2024
Accepted 14.04.2025

Information about authors:
Arseniy M. Tsygankov – senior lecturer of the Military Chair, Vitebsk State Order of Peoples’ Friendship Medical University,  https://orcid.org/0000-0003-1367-7742, e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.;
U.V. Yanchanka – Candidate of Medical Sciences, associate professor of the Chair of Clinical Immunology and Allergology with the course of the Faculty for Advanced Training & Retraining, Vitebsk State Order of Peoples’ Friendship Medical University, https://orcid.org/0000-0002-9355-8534;
O.V. Gribovskaya – Candidate of Chemical Sciences (Ph.D.), Deputy Director Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, https://orcid.org/0000-0001-6640-3388;
V.P. Martinovich ‒ Candidate of Chemical Sciences (Ph. D.), Leading Researcher Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus; http://orcid.org/0000-0002-145+4-619X.

Поиск по сайту