Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2025.2.81

I.Y. Zherka, D.A. Davydov, E.P. Shupilova, A.F. Mahilyanchyk, A.S. Portyanko
Expression of immunosuppressive factors TGFβ1 and IDO1 in choroidal melanoma
N.N. Alexandrov National Cancer Centre of Belarus, Minsk, Republic of Belarus

Vestnik VGMU. 2025;24(2):81-91.

Abstract.
Objectives. To determine the prognostic value of IDO1 and TGFβ1 expression in relation to the course of choroidal melanoma. 
Material and methods. In the retrospective study, we assessed the expression of IDO1 and TGFβ1 in tumor tissue samples from 64 patients with primary choroidal melanoma, for whom enucleation was the first treatment method. Regression analysis was used to assess the effect of potential risk factors on survival.
Results. The median follow-up was 86 (95% CI 38–120) months. Of the study cohort, the majority of tumors were TGFβ1-positive (79.6%) and IDO1-negative (85.9%). All IDO1-positive cases were also TGFβ1-positive. In the TGFβ1+ tumor group, signs of an unfavorable prognosis were statistically significantly more common: the presence of epithelioid cells in the tumor, the presence of vascular arches and loops, and the absence of nuclear expression of BAP. In addition, in case of TGFβ1+ expression, CD3-positive cells were statistically significantly less frequently detected in the tumor infiltrate, while the proportion of Foxp3-positive cells, on the contrary, was higher. In the IDO1+ group, earlier progression and death were observed compared to IDO1- tumors. The five-year overall survival in the IDO1+ group was 44.4±16.6%, in the IDO1- group – 72.6±6.3% (p=0.048).
Conclusions. Immunosuppressive microenvironment is associated with unfavorable course of choroidal melanoma. At the same time, most likely, increased expression of TGFβ1 itself does not contribute to a more aggressive course of the tumor process, but potentiates the activation of other mechanisms of immune suppression specific to the tumor. In particular, the unfavorable effect is realized due to hyperexpression of IDO1 in the choroidal melanoma tissues.
Keywords: choroidal melanoma, tumor microenvironment, prognosis, immunosuppressive tumor microenvironment.

References

1. Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology. Ophthalmology. 2011 Sep;118(9):1881-1885. doi: http://dx.doi.org/10.1016/j.ophtha.2011.01.040 
2. Kaliki S, Shields CL, Shields JA. Uveal melanoma: estimating prognosis. Indian Journal of Ophthalmology. 2015 Feb;63(2):93-102. doi: http://dx.doi.org/10.4103/0301-4738.154367 
3. Mariani P, Piperno-Neumann S, Servois V, Berry MG, Dorval T, Plancher C, et al. Surgical management of liver metastases from uveal melanoma: 16 years' experience at the Institut Curie. European Journal of Surgical Oncology. 2009 Nov;35(11):1192-1197. doi: http://dx.doi.org/10.1016/j.ejso.2009.02.016 
4. Nathan P, Cohen V, Coupland S, Curtis K, Damato B, Evans J, et al. Uveal melanoma UK National guidelines. European Journal of Cancer. 2015 Nov;51(16):2404-2412. doi: http://dx.doi.org/10.1016/j.ejca.2015.07.013 
5. Woodman SE. Metastatic uveal melanoma: biology and emerging treatments. Cancer Journal. 2012 Mar-Apr;18(2):148-152. doi: http://dx.doi.org/10.1097/PPO.0b013e31824bd256 
6. Algazi AP, Tsai KK, Shoushtari AN, Munhoz RR, Eroglu Z, Piulats JM, et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer. 2016 Nov;122(21):3344-3353. doi: http://dx.doi.org/10.1002/cncr.30258 
7. Nathan P, Ascierto PA, Haanen J, Espinosa E, Demidov L, Garbe C, et al. Safety and efficacy of nivolumab in patients with rare melanoma subtypes who progressed on or after ipilimumab treatment: a single-arm, open-label, phase II study (CheckMate 172). European Journal of Cancer. 2019 Sep:119:168-178. doi: http://dx.doi.org/10.1016/j.ejca.2019.07.010 
8. Piulats JM, Espinosa E, de la Cruz Merino L, Varela M, Carrión LA, Algarra SM, et al. Nivolumab plus ipilimumab for treatment-naïve metastatic uveal melanoma: an open-label, multicenter, phase II trial by the spanish multidisciplinary melanoma group (GEM-1402). Journal of Clinical Oncology. 2021 Feb;39(6):586-598. doi: http://dx.doi.org/10.1200/JCO.20.00550 
9. Pelster MS, Gruschkus SK, Bassett R, Gombos DS, Shephard M, Posada L, et al. Nivolumab and ipilimumab in metastatic uveal melanoma: results from a single-arm phase II study. Journal of Clinical Oncology. 2021 Feb;39(6):599-607. doi: http://dx.doi.org/10.1200/JCO.20.00605 
10. Niederkorn JY. Immune escape mechanisms of intraocular tumors. Progress in Retinal and Eye Research. 2009 Sep;28(5):329-347. doi: http://dx.doi.org/10.1016/j.preteyeres.2009.06.002 
11. Cheong JE, Sun L. Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy - challenges and opportunities. Trends in Pharmacological Sciences. 2018 Mar;39(3):307-325. doi: http://dx.doi.org/10.1016/j.tips.2017.11.007 
12. Prendergast GC, Smith C, Thomas S. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunology and Immunotherapy. 2014 Jul;63(7):721-735. doi: http://dx.doi.org/10.1007/s00262-014-1549-4 
13. Muller AJ, Sharma MD, Chandler PR, DuhadawayJB, Everhart ME, Johnson BA, et al. Chronic inflammation that facilitates tumor progression creates local immune suppression by inducing indoleamine 2,3 dioxygenase. Proceedings of the National Academy of Sciences of the United States of America. 2008 Nov;105(44):17073-17078. doi: http://dx.doi.org/10.1073/pnas.0806173105 
14. Chung DJ, Rossi M, Romano E, Ghith J, Yuan J, Munn DH, et al. Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood. 2009 Jul;114(3):555-563. doi: http://dx.doi.org/10.1182/blood-2008-11-191197 
15. Mondal A, Smith C, DuHadawayJB, Sutanto-Ward E, Prendergast GC, BravoNuevo A, et al. IDO1 is an integral mediator of inflammatory neovascularization. EBioMedicine. 2016 Dec:14:74-82. doi: http://dx.doi.org/10.1016/j.ebiom.2016.11.013 
16. Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. The Journal of Experimental Medicine. 2013 Jul;210(7):1389-402. doi: http://dx.doi.org/10.1084/jem.20130066 
17. Taylor AW. Ocular immunosuppressive microenvironment. Chemical Immunology and Allergy. 2007:92:71-85. doi: http://dx.doi.org/10.1159/000099255 
18. Wilbanks GA, Streilein JW. Fluids from immune privileged sites endow macrophages with the capacity to induce antigen-specific immune deviation via a mechanism involving transforming growth factor-beta. European Journal of Immunology. 1992 Apr;22(4):1031-1036. doi: http://dx.doi.org/10.1002/eji.1830220423 
19. Sugita S, Ng TF, Lucas PJ, Gress RE, Streilein JW. B7+ iris pigment epithelium induce CD8+ T regulatory cells; both suppress CTLA-4+ T cells. The Journal of Immunology. 2006 Jan;176(1):118-127. doi: http://dx.doi.org/10.4049/jimmunol.176.1.118 
20. Esser P, Grisanti S, Bartz-Schmidt K. TGF-beta in uvealmelanoma. Microscopy Research and Technique. 2001 Feb;52(4):396-400. doi: http://dx.doi.org/10.1002/1097-0029(20010215)52:4<396::AID-JEMT1024>3.0.CO;2-V 
21. Folberg R, Chen X, Boldt HC, Pe'er J, Brown CK, Woolson RF, et al. Microcirculation patterns other than loops and networks in choroidal and ciliary body melanomas. Ophthalmology. 2001 May;108(5):996-1001. doi: http://dx.doi.org/10.1016/s0161-6420(01)00541-3 
22. Zherko IYu, Gulenko OV, Ruksha KG, Davydov DA, Naumenko LV, Demeshko PD, i dr. Analysis of the relationship between tumor immune infiltrate characteristics and survival rates of patients with chorioideal melanoma. Evraziiskii Onkologicheskii Zhurnal. 2023;11(1):47-59. (In Russ.). doi: http://dx.doi.org/10.34883/PI.2023.11.1.015 
23. Grossniklaus HE, Eberhart CG, Kivela TT, ed. WHO classification of tumours of the eye. 4th ed. Lyon: IARC; 2018.
24. Metz R, Rust S, DuhadawayJB, Mautino MR, Munn DH, VahanianNN, et al. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyltryptophan. Oncoimmunology. 2012 Dec;1(9):1460-1468. doi: http://dx.doi.org/10.4161/onci.21716 
25. Hennequart M, Pilotte L, Cane S, Hoffmann D, Stroobant V, Plaen E, et al. Constitutive IDO1 expression in human tumors is driven by cyclooxygenase-2 and mediates intrinsic immune resistance. Cancer Immunology Research. 2017 Aug;5(8):695-709. doi: http://dx.doi.org/10.1158/2326-6066.CIR-16-0400 
26. Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML, Bianchi R, et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nature Immunology. 2011 Jul;12(9):870-878. doi: http://dx.doi.org/10.1038/ni.2077 
27. Ferdinande L, Decaestecker C, Verset L, Mathieu A, Moles Lopez X, Negulescu AM, et al. Clinicopathological significance of indoleamine 2,3-dioxygenase 1 expression in colorectal cancer. British Journal of Cancer. 2012 Jan;106(1):141-147. doi: http://dx.doi.org/10.1038/bjc.2011.513 
28. Hornyak L, Dobos N, Koncz G, Karanyi Z, Pall D, Szabo Z, et al. The role of indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy. Frontiers in Immunology. 2018 Jan:9:151. doi: http://dx.doi.org/10.3389/fimmu.2018.00151 
29. Ravishankar B, Liu H, Shinde R, Chaudhary K, Xiao W, Bradley J, et al. The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity. Proceedings of the National Academy of Sciences of the United States of America. 2015 Aug;112(34):10774-107749. doi: http://dx.doi.org/10.1073/pnas.1504276112 
30. Fallarino F, Grohmann U, You S, McGrath BC, CavenerDR, Vacca C, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. The Journal of Immunology. 2006 Jun;176(11):6752-6761. doi: http://dx.doi.org/10.4049/jimmunol.176.11.6752 
31. Prendergast GC, Malachowski WP, DuHadaway JB, Muller AJ. Discovery of IDO1 Inhibitors: From Bench to Bedside. Cancer Research. 2017 Dec;77(24):6795-6811. doi: http://dx.doi.org/10.1158/0008-5472.CAN-17-2285 
32. Huang Q, Xia J, Wang L, Wang X, Ma X, Deng Q, et al. miR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy. Journal of Hematology and Oncology. 2018 Apr;11(1):58. doi: http://dx.doi.org/10.1186/s13045-018-0600-x 
33. Holmgaard RB, Zamarin D, Munn DH, Wolchok JD. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. The Journal of Experimental Medicine. 2013 Jul;210(7):1389-1402. doi: http://dx.doi.org/10.1084/jem.20130066 
34. Toulmonde M, Penel N, Adam J, Chevreau C, BlayJY, Le Cesne A, et al. Use of PD-1 targeting, macrophage infiltration, and IDO pathway activation in sarcomas: a phase 2 clinical trial. JAMA Oncology. 2018 Jan;4(1):93-97. doi: http://dx.doi.org/10.1001/jamaoncol.2017.1617 
35. Berrong Z, Mkrtichyan M, Ahmad S, Webb M, Mohamed E, Okoev G, et al. Antigen-specific antitumor responses induced by OX40 agonist are enhanced by the IDO inhibitor indoximod. Cancer Immunology Research. 2018 Feb;6(2):201-208. doi: http://dx.doi.org/10.1158/2326-6066.CIR-17-0223 
36. Jochems C, Fantini M, Fernando RI, Kwilas AR, Donahue RN, Lepone LM, et al. The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells. Oncotarget. 2016 Jun;7(25):37762-37772. doi: http://dx.doi.org/10.18632/oncotarget.9326 
37. Kristeleit R, Davidenko I, Shirinkin V, El-Khouly F, Bondarenko I, Goodheart MJ, et al. A randomised, open-label, phase 2 study of the IDO1 inhibitor epacadostat (INCB024360) versus tamoxifen as therapy for biochemically recurrent (CA-125 relapse)-only epithelial ovarian cancer, primary peritoneal carcinoma, or fallopian tube cancer. Gynecologic Oncology. 2017 Sep;146(3):484-490. doi: http://dx.doi.org/10.1016/j.ygyno.2017.07.005 
38. Yue EW, Sparks R, Polam P, Modi D, Douty B, Wayland B, et al. INCB24360 (Epacadostat), a highly potent and selective indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor for immunooncology. ACS Medicinal Chemistry Letters. 2017 Mar;8(5):486-491. doi: http://dx.doi.org/10.1021/acsmedchemlett.6b00391

Submitted 14.10.2024
Accepted 14.04.2025

Information about authors:
Iryna Y. Zherka – Candidate of Medical Sciences, Senior Researcher of the Laboratory of Morphology, Molecular and Cellular Biology with Experimental Medicine Group, N.N. Alexandrov National Cancer Centre of Belarus, https://orcid.org/0000-0002-5134-3666, e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
D.A. Davydov – Candidate of Medical Sciences, Head of the Laboratory of Morphology, Molecular and Cellular Biology with Experimental Medicine Group, N.N. Alexandrov National Cancer Centre of Belarus;
E.P. Shupilova – Researcher of the Laboratory of Morphology, Molecular and Cellular Biology with Experimental Medicine Group, N.N. Alexandrov National Cancer Centre of Belarus;
A.F. Mahilyanchik – Junior Researcher of the Laboratory of Morphology, Molecular and Cellular Biology with Experimental Medicine Group, N.N. Alexandrov National Cancer Centre of Belarus;
A.S. Portyanko – Doctor of medical sciences, Head of the Republican Molecular Genetic Laboratory of Carcinogenesis, N.N. Alexandrov National Cancer Centre of Belarus.

Поиск по сайту