Menu

A+ A A-

Полный текст статьи

Шейбак В.М.
Транспортная функция сывороточного альбумина: цинк и жирные кислоты
УО «Гродненский государственный медицинский университет», Республика Беларусь

Резюме.
В обзоре представлены особенности структуры и свойств альбумина, их связь с антиоксидантной и транспортной функциями. Тиоловые группы альбумина вносят наибольший вклад в формирование общего пула тиолов плазмы и влияют на редокс-состояние осуществляя тиол-дисульфидный обмен и образовывая смешанные дисульфиды с низкомолекулярными серосодержащими соединениями. Представлены данные о транспорте цинка и жирных кислот альбумином. Связывание альбумина со свободными жирными кислотами изменяет легко обмениваемый пул Zn2+ в плазме. Жирные кислоты способны модулировать сродство альбумина в отношении Zn2+ при физиологических уровнях жирных кислот, что влияет на  обеспеченность тканей цинком и может вносить вклад в регуляцию состояний, сопровождающихся повышенным уровнем свободных жирных кислот. Показана конкуренция между альбумином и гликопротеинами плазмы за связывание свободных катионов цинка.
Ключевые слова: альбумин, жирные кислоты, цинк, гликопротеин.

Литература

1. Albumin-drug interaction and its clinical implication / K. Yamasaki [et al.] // Biochim Biophys Acta. – 2013 Dec. – Vol. 1830, N 12. – P. 5435-5443.
2. Merlot, A. M. Unraveling the mysteries of serum albumin-more than just a serum protein / A. M. Merlot, D. S. Kalinowski, D. R. Richardson // Front Physiol. – 2014 Aug. – Vol. 5. – P. 299.
3. Human serum albumin: from bench to bedside / G. Fanali [et al.] // Mol. Asp. Med. – 2012 Jun. – Vol. 33, N 3. – P. 209-290.
4. Oettl, K. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties / K. Oettl, R. E. Stauber // Br. J. Pharmacol. – 2007 Jul. – Vol. 151, N 5. – P. 580-590.
5. The extraordinary ligand binding properties of human serum albumin / M. Fasano [et al.] // IUBMB Life. – 2005 Dec. – Vol. 57, N 12. – P. 787-796.
6. Covalent adduction of human serum albumin by 4-hydroxy-2-nonenal: kinetic analysis of competing alkylation reactions / M. E. Szapacs [et al.] // Biochemistry. – 2006 Sep. – Vol. 45, N 35. – P. 10521-10528.
7. Turell, L.  The thiol pool in human plasma: the central contribution of albumin to redox processes / L. Turell, R. Radi, B. Alvarez // Free Radic. Biol. Med. – 2013 Dec. – Vol. 65. – P. 244-253.
8. Zhang, Y. S-nitrosothiols: cellular formation and transport / Y. Zhang, N. Hogg // Free Radic. Biol. Med. – 2005 Apr. – Vol. 38, N 7. – P. 831-838.
9. Moriarty-Craige, S. E. Jones DP. Extracellular thiols and thiol/disulfide redox in metabolism / S. E. Moriarty-Craige, D. P. Jones // Annu. Rev. Nutr. – 2004. – Vol. 24. – P. 481-509.
10. Carbonyl stress induced by intravenous iron during haemodialyis / R. Michelis [et al.] // Nephrol. Dial. Transplant. – 2003 May. – Vol. 18, N 5. – P. 924-930.
11. Oxidation of Arg-410 promotes the elimination of human serum albumin / Y. Iwao [et al.] // Biochim. Biophys. Acta. – 2006 Apr. – Vol. 1764, N 4. – P. 743-749.
12. Characterization of the Co2+ and Ni2+ binding amino-acid residues of the N-terminus of human albumin. An insight into the mechanism of a new assay for myocardial ischemia / D. Bar-Or [et al.] // Eur. J. Biochem. – 2001 Jan. – Vol. 268, N 1. – P. 42-47.
13. Future biomarkers for detection of ischemia and risk stratification in acute coronary syndrome / F. S. Apple [et al.] // Clin. Chem. – 2005 May. – Vol. 51, N 5. – P. 810-824.
14. Common presence of non-transferrin-bound iron among patients with type 2 diabetes / D. H. Lee [et al.] // Diabetes Care. – 2006 May. – Vol. 29, N 5. – P. 1090-1095.
15. King, J. C. Zinc: an essential but elusive nutrient / J. C. King // Am. J. Clin. Nutr. – 2011 Aug. –Vol. 94, N 2. – P. 679-684.
16. Redistribution of labile plasma zinc during mild surgical stress in the rat / E. Kelly [et al.] // Transl. Res. – 2011 Mar. – Vol. 157, N 3. – P. 139-149.
17. Sitar, M. E. Human serum albumin and its relation with oxidative stress / M. E. Sitar, S. Aydin, U. Cakatay // Clin. Lab. – 2013. – Vol. 59, N 9/10. – P. 945-952.
18. Rowe, D. J. Albumin facilitates zinc acquisition by endothelial cells / D. J. Rowe, D. J. Bobilya // Proc. Soc. Exp. Biol. Med. – 2000 Jul. – Vol. 224, N 3. – P. 178-186.
19. Zinc uptake by human erythrocytes with and without serum albumin in the medium / M. Gálvez [et al.] // Biol. Trace Elem. Res. – 2001. – Vol. 84, N 1/3. – P. 45-56.
20. In vivo absorption of medium-chain fatty acids by the rat colon exceeds that of short-chain fatty acids / J. R. Jorgensen [et al.] // Gastroenterology. – 2001 Apr. – Vol. 120, N 5. – P. 1152-1161.
21. Lafontan, M. Lipolysis and lipid mobilization in human adipose tissue / M. Lafontan, D. Langin // Prog. Lipid. Res. – 2009Sep. – Vol. 48, N 5. – P. 275-297.
22. Van der Vusse, G. J. Albumin as fatty acid transporter / G. J. van der Vusse // Drug. Metab. Pharmacokinet. – 2009. – Vol. 24, N 4. – P. 300-307.
23. Karpe, F. Fatty acids, obesity, and insulin resistance: time for a reevaluation / F. Karpe, J. R. Dickmann, K. N. Frayn // Diabetes. – 2011 Oct. – Vol. 60, N 10. – P. 2441-2449.
24. Allosteric modulation of zinc speciation by fatty acids / J. P. Barnett [et al.] // Biochim. Biophys. Acta. – 2013 dec. – Vol. 1830, N 12. – P. 5456-5464.
25. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy / J. R. Simard [et al.] // Proc. Natl. Acad. Sci. U. S. A. – 2005 Dec. – Vol. 102, N 50. – P. 17958-17963.
26. A molecular mechanism for modulating plasma Zn speciation by fatty acids / J. Lu [et al.] // J. Am. Chem. Soc. – 2012 Jan. – Vol. 134, N 3. – P. 1454-1457.
27. Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects / L. Costarelli [et al.] // J. Nutr. Biochem. – 2010 May. – Vol. 21, N 5. – P. 432-437.
28. Rutter, G. A. Think zinc: new roles for zinc in the control of insulin secretion / G. A. Rutter // Islets. – 2010 Jan-Feb. – Vol. 2, N 1. – P. 49-50.
29. Regulation of glucagon secretion by zinc: lessons from the beta cell-specific Znt8 knockout mouse model / A. B. Hardy [et al.] // Diabetes Obes. Metab. – 2011 Oct. – Vol. 13, Sup. 1. – P. 112-117.
30. Chen, M. D. Zinc may be a mediator of leptin production in humans / M. D. Chen, Y. M. Song, P. Y. Lin // Life Sci. – 2000 Apr. – Vol. 66, N 22. – P. 2143-2149.
31. Shay, N.F. Neurobiology of zinc-influenced eating behavior / N. F. Shay, H. F. Mangian // J. Nutr. – 2000 May. – Vol. 130. – P. 1493-1499.
32. Oh, Y. S. Effects of zinc on lipogenesis of bovine intramuscular adipocytes / Y. S. Oh, C. B. Choi // J. Anim. Sci. – 2004. – Vol. 17, N 10. – P. 1378-1382.
33. Zinc enhances adiponectin oligomerization to octadecamers but decreases the rate of disulfide bond formation / D. B. Briggs [et al.] // Biometals. – 2012 Apr. – Vol. 25, N 2. – P. 469-486.
34. Zinc-transporter genes in human visceral and subcutaneous adipocytes: lean versus obese / K. Smidt [et al.] // Mol. Cell. Endocrinol. – 2007 Jan. – Vol. 264, N 1/2. – P. 68-73.
35. Effect of maximal exercise on the short-term kinetics of zinc metabolism in sedentary men / S. L. Volpe [et al.] // Br. J. Sports Med. – 2007 Mar. – Vol. 41, N 3. – P. 156161.
36. Jones, A. L. Histidine-rich glycoprotein: a novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems / A. L. Jones, M. D. Hulett, C. R. Parish // Immunol. Cell. Biol. – 2005 Apr. – Vol. 83, N 2. – P. 106-118.
37. Namuswe, F. Secondary interactions involving zinc-bound ligands: roles in structural stabilization and macromolecular interactions / F. Namuswe, J. M. Berg // J. Inorg. Biochem. – 2012 Jun. – Vol. 111. – P. 146-149.
38. Jones, A. L. Histidine-rich glycoprotein binds to cell-surface heparan sulfate via its N-terminal domain following Zn2+ chelation / A. L. Jones, M. D. Hulett, C. R. Parish // J. Biol. Chem. – 2004 Jul. – Vol. 279, N 29. – P. 30114-30122.
39. Poon, I. K. Histidine-rich glycoprotein is a novel plasma pattern recognition molecule that recruits IgG to facilitate necrotic cell clearance via FceRI on phagocytes / I. K. Poon, M. D. Hulett, C. R. Parish // Blood. – 2010 Mar. – Vol. 115, N 12. – P. 2473-2482.
40. Horne, M. K. Histidine–proline-rich glycoprotein binding to platelets mediated by tansition metals / M. K. Horne, P. K. Merryman, A. M Cullinane // Thromb. Haemost. – 2001 May. – Vol. 85, N 5. – P. 890-895.
41. Vu, T. T. Zinc: an important co-factor in haemostasis and thrombosis / T. T. Vu, J. C. Fredenburgh, J. I. Weitz // Thromb. Haemost. – 2013 Mar. – Vol. 109, N 3. – P. 421-430.
42. Congenital analbuminaemia: biochemical and clinical implications. A case report and literature review / B. G. Koot [et al.] // Eur. J. Pediatr. – 2004 Nov. – Vol. 163, N 11. – P. 664-670.
43. Zinc fluxes and zinc transporter genes in chronic diseases / C. Devirgiliis [et al.] // Mutat. Res. – 2007 Sep. – Vol. 622, N 1/2. – P. 84-93.
44. Effect of maximal exercise on the short-term kinetics of zinc metabolism in sedentary men / S. L. Volpe [et al.] // Br. J. Sports Med. – 2007 Mar. – Vol. 41, N 3. – P. 156-161.
45. Serum zinc level and coronary heart disease events in patients with type 2 diabetes / M. Soinio [et al.] // Diabetes Care. – 2007 Mar. – Vol. 30, N 3. – P. 523-528.
46. Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zinc / J. Jansen [et al.] // J. Nutr. Biochem. – 2012 Nov. – Vol. 23, N 11. – P. 1458-1466.
47. Boden, G. Obesity, insulin resistance and free fatty acids / G. Boden // Curr. Opin. Endocrinol. Obes. – 2011 Apr. – Vol. 18, N 2. – P. 139-143.
48. Longitudinal study of serum copper and zinc levels and their distribution in blood proteins after acute myocardial infarction / E. Gomez [et al.] // J. Trace Elem. Med. Biol. – 2000 Jun. – Vol. 14, N 2. – P. 65-70.
49. Foster, M. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus / M. Foster, S. Samman // Antioxid. Redox Signal. – 2010 Nov. – Vol. 13, N 10. – P. 1549-1573.
50. Serum zinc concentration in acute myocardial infarction / T. Katayama [et al.] // Angiology. – 1999 Jun. – Vol. 41, N 6. – P. 479-485.

Сведения об авторах:
Шейбак В.М. – д.м.н., профессор кафедры биологической химии УО «Гродненский государственный медицинский университет».

Адрес для корреспонденции: Республика Беларусь, 230009, г. Гродно, ул. Горького, 80, УО « Гродненский государственный медицинский университет», кафедра биологической химии. Е-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Шейбак Владимир Михайлович.

 

Поиск по сайту