Menu

A+ A A-

Полный текст статьи

DOI: https://doi.org/10.22263/2312-4156.2019.4.28

Ткаченко А.С.
Инфламмасомы и пироптоз эпителиальных клеток кишечника: вклад в развитие болезни Крона и неспецифического язвенного колита
Харьковский национальный медицинский университет, г. Харьков, Украина

Вестник ВГМУ. – 2019. – Том 18, №4. – С. 28-39.

Резюме.
Данная обзорная работа посвящена описанию роли инфламмасом и пироптоза эпителиоцитов кишечника в развитии хронических воспалительных заболеваний кишечника – болезни Крона и неспецифического язвенного колита. Пироптоз – каспаза-1-зависимый вид клеточной смерти, опосредованный действием белка гасдермина D и сопровождающийся выделением во внеклеточную среду провопалительных цитокинов ИЛ-1β и ИЛ-18. В статье дана характеристика пироптоза с описанием факторов, которые приводят к его активации, функций, механизмов развития и регуляции процесса, а также описаны эффекты данного вида клеточной смерти, которые обуславливают усиление воспаления. Детально рассмотрен пироптоз эпителиальных клеток кишечника в норме и при патологии воспалительного генеза. Весомая роль инфламмасом и пироптоза эпителиальных клеток кишечника в патогенезе хронических воспалительных заболеваний кишечника обуславливает актуальность разработки и испытания антипироптотических препаратов.
Ключевые слова: пироптоз, инфламмасомы, клеточная смерть, эпителиальные клетки кишечника, хронические воспалительные заболевания кишечника, воспаление кишечника.

Автор благодарит Антона Мирошниченко за существенную помощь в подготовке иллюстративного материала к статье.

Литература

1. Kovacs, S. B. Gasdermins: effectors of pyroptosis / S. B. Kovacz, E. A. Miao // Trends Cell. Biol. – 2017 Sep. – Vol. 27, N 9. – P. 673–684.
2. Shi, J. Pyroptosis: Gasdermin-mediated programmed necrotic cell death / J. Shi, W. Gao, F. Shao // Trends Biochem. Sci. – 2017 Apr. – Vol. 42, N 4. – P. 245–254.
3. Jorgensen, I. Pyroptotic cell death defends against intracellular pathogens / I. Jorgensen, E. A. Miao // Immunol. Rev. – 2015 May. – Vol. 265, N 1. – P. 130–142.
4. Feng, S. Mechanisms of gasdermin family members in inflammasome signaling and cell death / S. Feng, D. Fox, S. M. Man // J. Mol. Biol. – 2018 Sep. – Vol. 430, N 18, pt. B. – P. 3068–3080.
5. The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of caspase-1 protease activity / K. S. Schneider [et al.] // Cell. Rep. – 2017 Dec. – Vol. 21, N 13. – P. 3846–3859.
6. Ramos-Junior, E. S. Gasdermin: A new player to the inflammasome game / E. S. Ramos-Junior, A. C. Morandini // Biomed J. – 2017 Dec. – Vol. 40, N 6. – P. 313–316.
7. Frank, D. Pyroptosis versus necroptosis: similarities, differences, and crosstalk / D. Frank, J. E. Vince // Cell. Death Differ. – 2019 Jan. – Vol. 26, N 1. – P. 99–114.
8. Inflammatory caspase-related pyroptosis: mechanism, regulation and therapeutic potential for inflammatory bowel disease / Y. Y. Yuan [et al.] // Gastroenterol. Rep. (Oxf.). – 2018 Aug. – Vol. 6, N 3. – P. 167–176.
9. Pyroptosis of intestinal epithelial cells is crucial to the development of mucosal barrier dysfunction and intestinal inflammation / E. M. Davis [et al.] // Gastroenterol. – 2017Apr. – Vol. 152, N 5, suppl. 1. – P. S967.
10. Fourie, S. Living with inflammatory bowel disease: A review of qualitative research studies / S. Fourie, D. Jackson, H. Aveyard // Int. J. Nurs. Stud. – 2018 Nov. – Vol. 87. – P. 149–156.
11. Inflammatory bowel disease / J. Wehkamp [et al.] // Dtsch. Arztebl. Int. – 2016 Feb. – Vol. 113, N 5. – P. 72–82.
12. Zuo, T. The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease / T. Zuo, S. C. Ng // Front Microbiol. – 2018 Sep. – Vol. 9. – P. 2247.
13. Ko, J. K. Inflammatory bowel disease: etiology, pathogenesis and current therapy / J. K. Ko, K. K. Auyeung // Curr. Pharm. Des. – 2014. – Vol. 20, N 7. – P. 1082–1096.
14. Tkachenko, A. S. Intestinal epithelial cells necroptosis and its association with intestinal inflammation / A. S. Tkachenko // J. Clin. Med. Kaz. – 2019. – Vol. 1, N 51. – P. 12–15.
15. Negroni, A. Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis / A. Negroni, S. Cucchiara, L. Stronati // Mediators Inflamm. – 2015. – Vol. 2015. – P. 250762.
16. Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion / M. Monteleone [et al.] // Cell. Rep. – 2018 Aug. – Vol. 24, N 6. – P. 1425–1433.
17. GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity / Q. Chen [et al.] // J. Mol. Cell. Biol. – 2018 Jun. – Vol. 11, N 6. – P. 496–508.
18. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3 / A. Denes [et al.] // Proc. Natl. Acad. Sci. USA. – 2015 Mar. – Vol. 112, N 13. – P. 4050–4055.
19. Guo, H. Inflammasomes: mechanism of action, role in disease, and therapeutics / H. Guo, J. B. Callaway, J. P. Ting // Nat. Med. – 2015 Jul. – Vol. 21, N 7. – P. 677–687.
20. Malik, A. Inflammasome activation and assembly at a glance / A. Malik, T. D. Kanneganti // J. Cell. Sci. – 2017 Dec. – Vol. 130, N 23. – P. 3955–3963.
21. Molecular mechanisms regulating NLRP3 inflammasome activation / E. K. Jo [et al.] // Cell. Mol. Immunol. – 2015 Mar. – Vol. 13, N 2. – P. 148–159.
22. Caspase-1: the inflammasome and beyond / G. Sollberger [et al.] // Innate Immun. – 2014 Feb. – Vol. 20, N 2. – P. 115–125.
23. Man, S. M. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases / S. M. Man, R. Karki, T. D. Kanneganti // Immunol. Rev. – 2017 May. – Vol. 277, N 1. – P. 61–75.
24. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death / J. Shi [et al.] // Nature. – 2015 Oct. – Vol. 526, N 7575. – P. 660–665.
25. Hurtley, S. M. Apoptosis, necrosis, and pyroptosis / S. M. Hurtley // Science. – 2016 Apr. – Vol. 352, N 6281. – P. 48–50.
26. Fink, S. L. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells / S. L. Fink, B. T. Cookson // Infect. Immun. – 2005 Apr. – Vol. 73, N 4. – P. 1907–1916.
27. Taabazuing, C. Y. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages / C. Y. Taabazuing, M. C. Okondo, D. A. Bachovchin // Cell. Chem. Biol. – 2017 Apr. – Vol. 24, N 4. – P. 507–514.
28. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner / S. A. Conos [et al.] // Proc. Natl. Acad. Sci. USA. – 2017 Feb. – Vol. 114, N 6. – P. E961–E969.
29. Blander, J. M. Death in the intestinal epithelium–basic biology and implications for inflammatory bowel disease / J. M. Blander // FEBS J. – 2016 Jul. – Vol. 283, N 14. – P. 2720–2730.
30. Horvay, K. Regulation of intestinal stem cells by Wnt and Notch signalling / K. Horvay, H. E. Abud // Adv. Exp. Med. Biol. – 2013. – Vol. 786. – P. 175–186.
31. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8 / I. Rauch [et al.] // Immunity. – 2017 Apr. – Vol. 46, N 4. – P. 649–659.
32. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict salmonella replication in the intestinal mucosa / M. E. Sellin [et al.] // Cell. Host. Microbe. – 2014 Aug. – Vol. 16, N 2. – P. 237–248.
33. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens / L. A. Knodler [et al.] // Cell. Host. Microbe. – 2014 Aug. – Vol. 16, N 2. – P. 249–256.
34. Lei-Leston, A. C. Epithelial cell inflammasomes in intestinal immunity and inflammation / A. C. Lei-Leston, A. G. Murphy, K. J. Maloy // Front. Immunol. – 2017 Sep. – Vol. 8. – P. 1168.
35. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation / F. Progatzky [et al.] // Nat. Commun. – 2017 Dec. – Vol. 5. – P. 5864.
36. Zhao, Y. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus / Y. Zhao, F. Shao // Immunol. Rev. – 2015 May. – Vol. 265, N 1. – P. 85–102.
37. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion / M. Wlodarska [et al.] // Cell. – 2014 Feb. – Vol. 156, N 5. – P. 1045–1059.
38. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling / M. Levy [et al.] // Cell. – 2015 Dec. – Vol. 163, N 6. – P. 1428–1443.
39. Chelakkot, C. Mechanisms regulating intestinal barrier integrity and its pathological implications / C. Chelakkot, J. Ghim, S. H. Ryu // Exp. Mol. Med. – 2018 Aug. – Vol. 50. – P. 103.
40. Siegmund, B. Interleukin-1beta converting enzyme (caspase-1) in intestinal inflammation / B. Sigmund // Biochem. Pharmacol. – 2002 Jul. – Vol. 64, N 1. – P. 1–8.
41. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells / M. Coccia [et al.] // J. Exp. Med. – 2012 Aug. – Vol. 209, N 9. – P. 1595–1609.
42. P128 inhibition of intestinal epithelial cell pyroptosis and associated mucosal barrier defects is a potential therapeutic mechanism of action for mesalamine in IBD / E. M. Davis [et al.] // Gastroenterol. – 2019 Feb. – Vol. 156, N 3. – P. S88.
43. Cholecalciterol cholesterol emulsion ameliorates experimental colitis via down-regulating the pyroptosis signaling pathway / Y. Xiong [et al.] // Exp. Mol. Pathol. – 2016 Jun. – Vol. 100, N 3. – P. 386–392.
44. The pathogenic role of NLRP3 inflammasome activation in inflammatory bowel diseases of both mice and humans / L. Liu [et al.] // J. Crohns. Colitis. – 2017 Jun. – Vol. 11, N 6. – P. 737–750.
45. Bioactive IL-18 expression is up-regulated in Crohn’s disease / G. Monteleone [et al.] // J. Immunol. – 1999 Jul. – Vol. 163. – P. 143–147.
46. Epithelial IL-18 equilibrium controls barrier function in colitis / R. Nowarski [et al.] // Cell. – 2015 Dec. – Vol. 163, N 6. – P. 1444–1456.
47. NMarLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury / S. S. Seregin [et al.] // Mucosal. Immunol. – 2017. – Vol. 10, N 2. – P. 434–445.
48. NLRP3 inflammasome has a protective effect against oxazolone-induced colitis: a possible role in ulcerative colitis / S. Itani [et al.] // Sci. Rep. – 2016 Dec. – Vol. 6. – P. 39075.
49. Zhen, Y. NLRP3 Inflammasome and inflammatory bowel disease / Y. Zhen, H. Zhang // Front Immunol. – 2019. – Vol. 10. – P. 276.
50. Man, S. M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis / S. M. Man // Nat. Rev. Gastroenterol. Hepatol. – 2018 Dec. – Vol. 15, N 12. – P. 721–737.
51. A balanced IL-1beta activity is required for host response to Citrobacter rodentium infection / M. Alipour [et al.] // PLoS ONE. – 2013 Dec. – Vol. 8, N 12. – P. e80656.
52. Protective role of commensals against Clostridium difficile infection via an IL-1beta-mediated positive-feedback loop / M. Hasegawa [et al.] // J. Immunol. – 2012 Sep. – Vol. 189, N 6. – P. 3085–3091.
53. Protective and aggravating effects of NLRP3 inflammasome activation in IBD models: influence of genetic and environmental factors / C. Bauer [et al.] // Dig. Dis. – 2012. – Vol. 30, suppl. 1. – P. 82–90.
54. The role of NLRP3 and IL-1β in the pathogenesis of inflammatory bowel disease / L. Mao [et al.] // Front Immunol. – 2018 Nov. – Vol. 9. – P. 2566.
55. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis / M. H. Zaki [et al.] // Immunity. – 2010 Mar. – Vol. 32, N 3. – P. 379–391.
56. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer / I. C. Allen [et al.] // J. Exp. Med. – 2010 May. – Vol. 207, N 5. – P. 1045–1056.
57. Liu, L. NLRP3 inflammasome in inflammatory bowel disease: friend or foe? / L. Liu, X. Li // Dig. Dis. Sci. – 2017 Sep. – Vol. 62, N 9. – P. 2211–2214.
58. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice / A. P. Perera [et al.] // Sci. Rep. – 2018 Jun. – Vol. 8. – P. 8618.

Сведения об авторах:
Ткаченко А.С. – к.м.н., доцент кафедры биологической химии, Харьковский национальный медицинский университет,
ORCID: https://orcid.org/0000-0002-1029-1636.

Адрес для корреспонденции: Украина, 61022, г. Харьков, пр. Науки, 4, Харьковский национальный медицинский университет, кафедра биохимии. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Ткаченко Антон Сергеевич.

Поиск по сайту