A+ A A-

Download article

Sheybak V.M.
Transport function of serum albumin: zinc and fatty acids
Education Establishment "Grodno State Medical University", Republic of Belarus

This review deals with the features of the structure and properties of albumin, their relationship with the antioxidant and transport functions. Thiol groups of albumin mostly contribute to the formation of the common pool of plasma thiols and affect the redox state carrying out the thiol-disulfide exchange and forming mixed disulfides with low molecular weight sulfur-containing compounds. The data on the transport of fatty acids and zinc by albumin are presented. Albumin binding with free fatty acids changes readily exchangeable pool of Zn2+ in plasma. Fatty acids are able to modulate the affinity of albumin with respect to Zn2+ on physiological levels of fatty acids which affects the provision of tissues with zinc and may contribute to the regulation of conditions accompanied by the increased levels of free fatty acids. The competition between albumin and plasma glycoproteins for the binding of free zinc cations has been shown.
Key words: albumin, fatty acids, zinc, glycoprotein.


1. Yamasaki K, Chuang VT, Maruyama T, Otagiri M. Albumin-drug interaction and its clinical implication. Biochim Biophys Acta. 2013 Dec;1830(12):5435-43.
2. Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin-more than just a serum protein. Front Physiol. 2014 Aug;5:299.
3. Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: from bench to bedside. Mol Aspects Med. 2012 Jun;33(3):209-90.
4. Oettl K, Stauber RE. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br J Pharmacol. 2007 Jul;151(5):580-90.
5. Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 2005 Dec;57(12):787-96.
6. Szapacs ME, Riggins JN, Zimmerman LJ, Liebler DC. Covalent adduction of human serum albumin by 4-hydroxy-2-nonenal: kinetic analysis of competing alkylation reactions. Biochemistry. 2006 Sep;45(35):10521-8.
7. Turell L, Radi R, Alvarez B. The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med. 2013 Dec;65:244-53.
8. Zhang Y, Hogg N. S-nitrosothiols: cellular formation and transport. Free Radic Biol Med. 2005 Apr 1;38(7):831-8.
9. Moriarty-Craige SE, Jones DP. Extracellular thiols and thiol/disulfide redox in metabolism. Annu Rev Nutr. 2004;24:481-509.
10. Michelis R, Gery R, Sela S, Shurtz-Swirski R, Grinberg N, Snitkovski T, Shasha SM, Kristal B. Carbonyl stress induced by intravenous iron during haemodialyis. Nephrol Dial Transplant. 2003 May;18(5):924-30.
11. Iwao Y, Anraku M, Yamasaki K, Kragh-Hansen U, Kawai K, Maruyama T, Otagiri M. Oxidation of Arg-410 promotes the elimination of human serum albumin. Biochim Biophys Acta. 2006 Apr;1764(4):743-9.
12. Bar-Or D, Curtis G, Rao N, Bampos N, Lau E. Characterization of the Co2+ and Ni2+ binding amino-acid residues of the N-terminus of human albumin. Eur J Biochem. 2001 Jan;268(1):42-7.
13. Apple FS, Wu AH, Mair J, Ravkilde J, Panteghini M, Tate J, Pagani F, Christenson RH, Mockel M, Danne O, Jaffe AS. Future biomarkers for detection of ischemia and risk stratification in acute coronary syndrome. Clin Chem. 2005 May;51(5):810-24.
14. Lee DH, Liu DY, Jacobs DR Jr, Shin HR, Song K, Lee IK, Kim B, Hider RC. Common presence of non-transferrin-bound iron among patients with type 2 diabetes. Diabetes Care. 2006 May;29(5):1090-5.
15. King JC. Zinc: an essential but elusive nutrient. Am J Clin Nutr. 2011 Aug;94(2):679-84.
16. Kelly E, Mathew J, Kohler JE, Blass AL, Soybel DI. Redistribution of labile plasma zinc during mild surgical stress in the rat. Transl Res. 2011 Mar;157(3):139-49.
17. Sitar ME, Aydin S, Cakatay U. Human serum albumin and its relation with oxidative stress. Clin Lab. 2013;59(9-10):945-52.
18. Rowe DJ, Bobilya DJ. Albumin facilitates zinc acquisition by endothelial cells. Proc Soc Exp Biol Med. 2000 Jul;224(3):178-86.
19. Gálvez M, Moreno JA, Elósegui LM, Escanero JF. Zinc uptake by human erythrocytes with and without serum albumin in the medium. Biol Trace Elem Res. 2001 Winter;84(1-3):45-56.
20. Jørgensen JR, Fitch MD, Mortensen PB, Fleming SE. In vivo absorption of medium-chain fatty acids by the rat colon exceeds that of short-chain fatty acids. Gastroenterology. 2001 Apr;120(5):1152-61.
21. Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res. 2009 Sep;48(5):275-97.
22. Van der Vusse GJ. Albumin as fatty acid transporter. Drug Metab Pharmacokinet. 2009;24(4):300-7.
23. Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011 Oct;60(10):2441-9.
24. Barnett JP, Blindauer CA, Kassaar O, Khazaipoul S, Martin EM, Sadler PJ, Stewart AJ. Allosteric modulation of zinc speciation by fatty acids. Biochim Biophys Acta. 2013 Dec;1830(12):5456-64.
25. Simard JR, Zunszain PA, Ha C-E, Yang JS, Bhagavan NV, Petitpas I, Curry S, Hamilton JA. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy. Proc Natl Acad Sci U S A. 2005 Dec;102(50):17958-17963.
26. Lu J, Stewart AJ, Sleep D, Sadler P, Pinheiro TJT, Blindauer CA. A molecular mechanism for modulating plasma Zn speciation by fatty acids. J Am Chem Soc. 2012 Jan;134(3):1454-1457.
27. Costarelli L, Muti E, Malavolta M, Cipriano C, Giacconi R, Tesei S, Piacenza F, Pierpaoli S, Gasparini N, Faloia E, Tirabassi G, Boscaro M, Polito A, Mauro B, Maiani F, Raguzzini A, Marcellini F, Giuli C, Papa R, Emanuelli M, Lattanzio F, Mocchegiani E. Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J Nutr Biochem. 2010 May;21(5):432-7.
28. Rutter GA. Think zinc: new roles for zinc in the control of insulin secretion. Islets. 2010 Jan-Feb;2(1):49-50.
29. Hardy AB, Serino AS, Wijesekara N, Chimienti F, Wheeler MB. Regulation of glucagon secretion by zinc: lessons from the beta cell-specific Znt8 knockout mouse model. Diabetes Obes Metab. 2011 Oct;13 Suppl 1:112-7.
30. Chen MD, Song YM, Lin PY. Zinc may be a mediator of leptin production in humans. Life Sci. 2000 Apr 21;66(22):2143-9.
31. Shay NF, Mangian HF. Neurobiology of zinc-influenced eating behavior. J Nutr. 2000 May;130(5S Suppl):1493-9.
32. Oh YS, Choi CB. Effects of zinc on lipogenesis of bovine intramuscular adipocytes. Asian-Australasian Journal of Animal Sciences. 2004;17(10):1378-1382.
33. Briggs DB, Giron RM, Schnittker K, Hart MV, Park CK, Hausrath AC, Tsao TS. Zinc enhances adiponectin oligomerization to octadecamers but decreases the rate of disulfide bond formation. Biometals. 2012 Apr;25(2):469-86.
34. Smidt K, Pedersen SB, Brock B, Schmitz O, Fisker S, Bendix J, Wogensen L, Rungby J. Zinc-transporter genes in human visceral and subcutaneous adipocytes: lean versus obese. Mol Cell Endocrinol. 2007 Jan;264(1-2):68-73.
35. Volpe SL, Lowe NM, Woodhouse LR, King JC. Effect of maximal exercise on the short-term kinetics of zinc metabolism in sedentary men. Br J Sports Med. 2007 Mar;41(3):156-61.
36. Jones AL, Hulett MD, Parish CR. Histidine-rich glycoprotein: a novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems. Immunol Cell Biol. 2005 Apr;83(2):106-18.
37. Namuswe F, Berg JM. Secondary interactions involving zinc-bound ligands: roles in structural stabilization and macromolecular interactions. J Inorg Biochem. 2012 Jun;111:146-9.
38. Jones AL, Hulett MD, Parish CR. Histidine-rich glycoprotein binds to cell-surface heparan sulfate via its N-terminal domain following Zn2+ chelation. J Biol Chem. 2004 Jul;279(29):30114-22.
39. Poon IK, Hulett MD, Parish CR. Histidine-rich glycoprotein is a novel plasma pattern recognition molecule that recruits IgG to facilitate necrotic cell clearance via FcγRI on phagocytes. Blood. 2010 Mar;115(12):2473-82.
40. Horne MK, Merryman PK, Cullinane AM. Histidine–proline-rich glycoprotein binding to platelets mediated by tansition metals. Thromb Haemost. 2001 May;85(5):890-5.
41. Vu TT, Fredenburgh JC, Weitz JI. Zinc: an important co-factor in haemostasis and thrombosis. Thromb Haemost. 2013 Mar;109(3):421-30.
42. Koot BG, Houwen R, Pot DJ, Nauta J. Congenital analbuminaemia: biochemical and clinical implications. A case report and literature review. Eur J Pediatr. 2004 Nov;163(11):664-70.
43. Devirgiliis C, Zalewski PD, Perozzi G, Murgia C. Zinc fluxes and zinc transporter genes in chronic diseases. Mutat Res. 2007 Sep;622(1-2):84-93.
44. Volpe SL, Lowe NM, Woodhouse LR, King JC. Effect of maximal exercise on the short-term kinetics of zinc metabolism in sedentary men. Br J Sports Med. 2007 Mar;41(3):156-61.
45. Soinio M, Marniemi J, Laakso M, Pyörälä K, Lehto S, Rönnemaa T. Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care. 2007 Mar;30(3):523-8.
46. Jansen J, Rosenkranz E, Overbeck S, Warmuth S, Mocchegiani E, Giacconi R, Weiskirchen R, Karges W, Rink L. Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zinc. J Nutr Biochem. 2012 Nov;23(11):1458-66.
47. Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes. 2011 Apr;18(2):139-43.
48. Gomez E, del Diego C, Orden I, Elósegui LM, Borque L, Escanero JF. Longitudinal study of serum copper and zinc levels and their distribution in blood proteins after acute myocardial infarction. J Trace Elem Med Biol. 2000 Jun;14(2):65-70.
49. Foster M, Samman S. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal. 2010 Nov;13(10):1549-73.
50. Katayama T, Honda Y, Yamasaki H, Kitamura S, Okano Y. Serum zinc concentration in acute myocardial infarction. Angiology. 1990 Jun;41(6):479-85.


Поиск по сайту