Menu

A+ A A-

Download article

Simonov P.V.*, Reznichenko L.S.**, Chekman I.S.*
The influence of copper nanoparticles on clinical picture and morphologic blood indices in experimental generalized infection in rats
*National Medical University named after A.A. Bogomolca, Ukraine
**Biological Chemistry Institute named after F.D. Ovcharenko, Ukraine

Abstract.
Objectives. To determine the influence of fivefold intravenous administration of copper nanoparticles on clinical picture and morphologic blood indices in experimental generalized infection in rats.
Material and methods. Generalized infection was modelled in Wistar rats by means of intravenous injection of  mixed suspensions of day’s bacterial cultures of Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus zooepidemicus. Rats were treated with intravenous injections of 20 nm metallic copper nanoparticles (4 mg/kg or 40 mg/kg) as a drug under study or ceftriaxone (60 mg/kg) as a comparator in 24 hours after infection and once a day during four subsequent days. The efficacy of copper nanoparticles use was determined according to such parameters as clinical picture, body weight, and morphologic blood indices.
Results. Copper nanoparticles administration resulted in the improvement of clinical course of generalized infection and didn’t lead to any significant decrease in body weight of animals. The determined morphologic blood indices confirmed positive dynamics of their recovery. Ceftriaxone proved to be less effective than copper nanoparticles in the infection model used.
Conclusions. Copper nanoparticles possess greater efficacy compared to ceftriaxone in the treatment of generalized infection in rats judging by such parameters as clinical picture, body weight, and morphologic blood indices.
Key words: preclinical study, metal nanoparticles, copper, bacteriemia, blood count, signs and symptoms.

References

1. Shapoval SD, Savon ІL, Datsenko BM. Osnovi formuvannia lіkuval'noї programi u khvorikh na sepsis [Bases of formation of the medical program at patients with sepsis]. Shpital'na khіrurgіia. 2013;(2):9–13.
2. Paul M, Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother. 2010 Nov;54(11):4851-63.
3. Gootz TD. The global problem of antibiotic resistance. Crit Rev Immunol. 2010;30(1):79-93.
4. Llor C, Bjerrum L. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf. 2014 Dec;5(6):229-41.
5. Chekman ІS, Ul'berg ZR, Malanchuk VO, Gorchakova NO, Zupanets' ІA. Nanonauka, nanobіologіia, nanofarmatsіia [Nanoscience, Nanobiology, nanopharmacy]. Kiev, Ukraine: Polіgraf plius; 2012. 328 р.
6. Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther. 2011 Nov;9(11):1035-52.
7. Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013 Nov;65(13-14):1803-15.
8. Rєznіchenko LS, Rudenko AV, Sіmonov PV, Gruzіna TG, Ul'berg ZR, Chekman ІS. Efektivnіst' dії nanochastinok mіdі do zbudnikіv іnfektsіino-zapal'nikh protsesіv rіznoї lokalіzatsії [Efficiency of action of nanoparticles of copper to originators of infectious and inflammatory processes of various localization]. Vіsnik farmatsії. 2012;(3):75–8.
9. Trakhtenberg ІM, Ul'berg ZR, Chekman ІS. et al. Otsіnka bezpeki lіkars'kikh nanopreparatіv [Assessment of safety of medicinal nanopreparations]: metodichnі rekomendatsії. Kiev, Ukraine; 2013. 108 р.
10. Nakaz Mіnіsterstva okhoroni zdorov’ia Ukraїni vіd 19 bereznia 2007 roku № 128 «Pro zatverdzhennia klіnіchnikh protokolіv nadannia medichnoї dopomogi za spetsіal'nіstiu «Pul'monologіia» [The order of Ministry of Health of Ukraine of March 19, 2007 No. 128 "About the adoption of clinical protocols of delivery of health care in "Pulmonology"] [Elektronnii resurs]. Rezhim dostupu: http://www.moz.gov.ua/ua/portal/dn_20070319_128.html. Data dostupu: 20.07.2015.
11. Savelyev VS, red, Gelfand BR, red. Sepsis v nachale KhXI veka. Klassifikatsiia, kliniko-diagnosticheskaia kontseptsiia i lechenie. Patologoanatomicheskaia diagnostika [Classification, clinicodiagnostic concept and treatment. Pathoanathomical diagnostics]: rukovodstvo. Moscow, RF: Litterra; 2006. 176 р.
12. Stefanov OV, red. Doklіnіchnі doslіdzhennia lіkars'kikh zasobіv [Preclinical researches of medicines]: metodichnі rekomendatsії. Kiev, Ukraine: Avіtsena; 2001. 528 р.
13. Aird WC. The hematologic system as a marker of organ dysfunction in sepsis. Mayo Clin Proc. 2003 Jul;78(7):869-81.
14. Goyette RE, Key NS, Ely EW. Hematologic changes in sepsis and their therapeutic implications. Semin Respir Crit Care Med. 2004 Dec;25(6):645-59.
15. Tchebiner JZ, Nutman A, Boursi B, Shlomai A, Sella T, Wasserman A, Guzner-Gur H. Diagnostic and prognostic value of thrombocytosis in admitted medical patients. Am J Med Sci. 2011 Nov;342(5):395-401.
16. Cavaillon JM, Adib-Conquy M. Immune status in sepsis: the bug, the site of infection and the severity can make the difference. Crit Care. 2010;14(3):167.

Поиск по сайту