Menu

A+ A A-

Download article

Kulikov V.A., Belyaeva L.E.
On bioenergetics of a tumoral cell
Educational Establishment «Vitebsk State Order of Peoples’ Friendship Medical University», Vitebsk, Republic of Belarus

Vestnik VGMU. 2015;14(6):5-14.

Abstract.
In the mid-twenties of the last century Otto Warburg has discovered that glycolysis is the basic source of АТP in tumor cells. According to the Warburg's hypothesis, activation of glycolysis results from an irreversible damage of mitochondrial respiration which, in its turn, can lead to neoplastic transformation of a cell. However, the Warburg’s hypothesis gradually has lost its topicality due to the absence of convincing evidence of mitochondrial defects in tumor cells. Scientists began to believe that changes in bioenergetics of tumoral cells were rather a consequence than a reason of neoplastic transformation of cells. Introduction of the positron-emission tomography with fluorodeoxyglucose into the clinical practice in the nineties of the last century for the visualization of tumors has revived the interest of scientific community to the Warburg’s hypothesis. However, up to now the question about the role played by this effect in the carcinogenesis still remains not clear. In the present review we have tried to consider the scientific arguments supporting or disproving the Warburg’s hypothesis. In conclusion we want to say that the analysis of  scientific researches results has allowed to reveal two possible scenarios by means of which mitochondria can participate in carcinogenesis: (1) mitochondrial dysfunction is a primary cause of the aerobic glycolysis development and neoplastic cellular transformation; (2) mitochondrial dysfunction is only the second stage in metabolic reprogramming of a tumor cell, so it is a consequence of the tumor transformation of a cell. The classical «chicken and egg» dilemma of the given problem, unfortunately, remains not solved yet, but the existence of a close connection between oncogenes and the Warburg’s effect, does not cause doubts any more.
Key words: mitochondrion, cancer, Warburg’s effect.

References

1. Warburg O. On the origin of cancer cells. Science. 1956 Feb;123(3191):309-14.
2. Warburg O. On respiratory impairment in cancer cells. Science. 1956 Aug;124(3215):269-70.
3. Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM, Cejas P, Hardisson D, Fresno Vara JA, Belda-Iniesta C, González-Barón M, Cuezva JM. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancerprognosis. Carcinogenesis. 2005 Dec;26(12):2095-104.
4. Ortega AD, Sánchez-Aragó M, Giner-Sánchez D, Sánchez-Cenizo L, Willers I, Cuezva JM. Glucose avidity of carcinomas. Cancer Lett. 2009 Apr;276(2):125-35.
5. Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaría G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC. The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res. 2002 Nov;62(22):6674-81.
6. López-Ríos F, Sánchez-Aragó M, García-García E, Ortega AD, Berrendero JR, Pozo-Rodríguez F, López-Encuentra A, Ballestín C, Cuezva JM. Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res. 2007 Oct;67(19):9013-7.
7. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 2007 Jan;292(1):C125-36.
8. Schulz TJ, Thierbach R, Voigt A, Drewes G, Mietzner B, Steinberg P, Pfeiffer AF, Ristow M. Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. J Biol Chem. 2006 Jan;281(2):977-81.
9. Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res. 2008 Dec;49(12):2545-56.
10. Gaude E, Frezza C. Defects in mitochondrial metabolism and cancer. Cancer Metab. 2014 Jul;2:10.
11. Morin A, Letouzé E, Gimenez-Roqueplo AP, Favier J. Oncometabolites-driven tumorigenesis: From genetics to targeted therapy. Int J Cancer. 2014 Nov;135(10):2237-48.
12. Samudio I, Fiegl M, Andreeff M. Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res. 2009 Mar;69(6):2163-6.
13. Ayyasamy V, Owens KM, Desouki MM, Liang P, Bakin A, Thangaraj K, Buchsbaum DJ, LoBuglio AF, Singh KK. Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PLoS One. 2011;6(9):e24792.
14. Eakin RT, Morgan LO, Gregg CT, Matwiyoff NA. Carbon-13 nuclear magnetic resonance spectroscopy of living cells and their metabolism of a specifically labeled 13C substrate. FEBS Lett. 1972 Dec;28(3):259-264.
15. Weinhouse S. The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1976;87(2):115-26.
16. Pedersen PL, Greenawalt JW, Chan TL, Morris HP. A comparison of some ultrastructural and biochemical properties of mitochondria from Morris hepatomas 9618A, 7800, and 3924A. Cancer Res. 1970 Nov;30(11):2620-6.
17. Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978;22:190-274.
18. Plathow C, Weber WA. Tumor cell metabolism imaging. J Nucl Med. 2008 Jun;49 Suppl 2:43S-63S.
19. Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004 Dec;84(6):1014-20.
20. Fantin VR1, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006 Jun;9(6):425-34.
21. Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 2004 Feb;64(3):985-93.
22. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED. A mitochondria-K+channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007 Jan;11(1):37-51.
23. Zheng J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncol Lett. 2012 Dec;4(6):1151-1157.
24. Bellance N, Benard G, Furt F, Begueret H, Smolková K, Passerieux E, Delage JP, Baste JM, Moreau P, Rossignol R. Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity. Int J Biochem Cell Biol. 2009 Dec;41(12):2566-77.
25. Rodríguez-Enríquez S, Carreño-Fuentes L, Gallardo-Pérez JC, Saavedra E, Quezada H, Vega A, Marín-Hernández A, Olín-Sandoval V, Torres-Márquez ME, Moreno-Sánchez R. Oxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinoma. Int J Biochem Cell Biol. 2010 Oct;42(10):1744-51.
26. Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured Hela cells. J Biol Chem. 1979 Apr;254(8):2669-76.
27. Griguer CE, Oliva CR, Gillespie GY. E. Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines. J Neurooncol. 2005 Sep;74(2):123-33.
28. Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 2004 Feb;64(3):985-93.
29. Smolková K, Bellance N, Scandurra F, Génot E, Gnaiger E, Plecitá-Hlavatá L, Jezek P, Rossignol R. Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J Bioenerg Biomembr. 2010 Feb;42(1):55-67.
30. Plecitá-Hlavatá L, Lessard M, Santorová J, Bewersdorf J, Jezek P. Mitochondrial oxidative phosphorylation and energetic status are reflected by morphology of mitochondrial network in INS-1E and HEP-G2 cells viewed by 4Pi microscopy. Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):834-46.
31. Herst PM, Berridge MV. Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines. Biochim Biophys Acta. 2007 Feb;1767(2):170-7.
32. Rodríguez-Enríquez S1, Carreño-Fuentes L, Gallardo-Pérez JC, Saavedra E, Quezada H, Vega A, Marín-Hernández A, Olín-Sandoval V, Torres-Márquez ME, Moreno-Sánchez R. Oxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinoma. Int J Biochem Cell Biol. 2010 Oct;42(10):1744-51.
33. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E. Energy metabolism in tumor cells. FEBS J. 2007 Mar;274(6):1393-418.
34. Bellance N, Benard G, Furt F, Begueret H, Smolková K, Passerieux E, Delage JP, Baste JM, Moreau P, Rossignol R. Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity. Int J Biochem Cell Biol. 2009 Dec;41(12):2566-77.
35. Formentini L, Martínez-Reyes I, Cuezva JM. The mitochondrial bioenergetics capacity of carcinomas. IUBMB Life. 2010 Jul;62(7):554-60.
36. Isidoro A, Martínez M, Fernández PL, Ortega AD, Santamaría G, Chamorro M, Reed JC, Cuezva JM. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J. 2004 Feb;378(Pt 1):17-20.
37. Smolková  K, Plecitá-Hlavatá L, Bellance N, Benard G, Rossignol R, Ježek P. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol. 2011 Jul;43(7):950-68.
38. Ibsen KH. The Crabtree effect: a review. Cancer Res. 1961 Aug;21:829-41.
39. Kulikov VA, Belyaeva LE. Signal'nye kaskady, onkogeny, geny-onkosupressory i metabolizm rakovoi kletki [Alarm cascades, oncogenes, genes-onkosupressory and metabolism of a cancer cell]. Vestn VGMU. 2014;13(5):6-15.
40. Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010 Feb;20(1):51-6.
41. Dang CV, Kim JW, Gao P, Yustein J. The interplay between MYC and HIF in cancer. Nat Rev Cancer. 2008 Jan;8(1):51-6.
42. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM. p53 regulates mitochondrial respiration. Science. 2006 Jun;312(5780):1650-3.
43. Kulawiec M, Ayyasamy V, Singh KK. p53 regulates mtDNA copy number and mitocheckpoint pathway. J Carcinog. 2009;8:8.
44. Yang D, Wang MT, Tang Y, Chen Y, Jiang H, Jones TT, Rao K, Brewer GJ, Singh KK, Nie D. Impairment of mitochondrial respiration in mouse fibroblasts by oncogenic H-RAS(Q61L). Cancer Biol Ther. 2010 Jan;9(2):122-33.
45. Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene. 2006 Aug;25(34):4647-62.
46. Wallace DC. Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol. 2005;70:363-74.
47. Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshall FF, Wallace DC. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A. 2005 Jan;102(3):719-24.
48. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008 May;320(5876):661-4.
49. Ju YS, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S, Ramakrishna M, Davies HR, Papaemmanuil E. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife. 2014 Oct;3:e02935.

Поиск по сайту