DOI: https://doi.org/10.22263/2312-4156.2016.1.37
Dvoretsky E.O.*, Lesnichaya O.V.**, Senkovich S.A.**, Generalov I.I.**
Automatic real time IHC nuclear markers assessment in histologic specimens of breast carcinoma
*Public Health Establishment «Vitebsk Regional Clinical Hospital», Vitebsk, Republic of Belarus
**Educational Establishment «Vitebsk State Order of Peoples’ Friendship Medical University», Vitebsk, Republic of Belarus
Vestnik VGMU. 2016;15(1):37-47.
Abstract.
Breast cancer is the most common oncologic pathology among women worldwide. Precise cancer markers assessment is crucial for treatment development, evaluation of prognosis and economic efficiency for a given patient.
Taking into consideration known issues with immunohistochemical techniques in routine pathomorphological diagnosis, the new method for automatic assay analysis was developed. It reduces interobserver variation, time consumption and requires less effort for documentation.
The method is based on developed original software called «Immunopy», which allows to perform video processing from camera attached to an optical microscope. Analysis accomplishes in real time, simultaneously with visual slide assessment.
The program produces «augmented reality» video with color markers overlay, which facilitates distinguishing between positive and negative cells. Numerical cell features such as count, labeling index displayed as well. User can save acquired photos, and export statistics in spreadsheet programs like Microsoft Excel or LibreOffice Calc.
Correlation analysis between visual and automatic assessment of labeling index (rpearson=0,91; rspearman=0,8; p<0,0001) performed as well.
Immunopy is free software and source code is distributed under the terms of MIT license.
Given methods and algorithms can be found useful in clinical practice and research.
Key words: breast neoplasms, immunohistochemistry, image cytometry, computer-assisted image analysis, computer-assisted image interpretation, Ki-67 antigen, estrogen receptor alpha, progesterone receptors.
References
1. Davydov MI, Aksel EM, red. Statistika zlokachestvennykh novoobrazovanii v Rossii i stranakh SNG v 2009 g. [Statistics of malignant neoplasms in Russia and the CIS countries in 2009]. Vestn RONTs im NN Blokhina RAMN. 2011;22(3) pril 1:9-170.
2. Gershteyn ES. Tkanevye markery kak faktory prognoza pri rake molochnoi zhelezy [Fabric markers as forecast factors at a breast cancer]. Prakt Onkologiia. 2002;3(1):38-44.
3. Allred DC. Issues and updates: evaluating estrogen receptor-e, progesterone receptor, and HER2 in breast cancer. Mod Pathol. 2010 May;23 Suppl 2:S52-9.
4. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7(10):R100.
5. Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics. 2011 Apr;27(8):1179-80.
6. Tuominen VJ, Ruotoistenmäki S, Viitanen A, Jumppanen M, Isola J. ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 2010;12(4):R56.
7. Nadyrov EA, Rogov YuI, Dubrovskiy ACh, Voropaev EV, Achinovich SL, Krylov AYu, Bogdanovich AP, Prokopovich AS. Immunogistokhimicheskie metody issledovaniia novoobrazovanii razlichnogo geneza [Immunohistochemical methods of research of neoplasms of various genesis]: instruktsiia po primeneniiu. Gomel, RB; 2011. 23 р.
8. Lesnichaya OV, Krylov EYu, Dubrovskiy ACh, Vozmitel MA. Metod immunogistokhimicheskoi otsenki gormonoretseptornogo statusa i HER2/NEU pri rake molochnoi zhelezy [A method of an immunohistochemical assessment of the gormonoretseptorny status and HER2/NEU at a breast cancer]: instruktsiia po primeneniiu. Vitebsk, RB: VGMU; 2014. 8 р.
9. Oliphant TE. Python for Scientific Computing. Computing in Science & Engineering. 2007 Jun;9(3):10-20.
10. van der Walt S, Colbert SC, Varoquaux G. The NumPy Array: A Structure for Efficient Numerical Computation. Computing in Science & Engineering. 2011;13(2):22-30.
11. SciPy: Open source scientific tools for Python [Internet]. 2001 [cited 2015 Nov 15]. Available from: http://scipy.org/.
12. van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T. Scikit-image: image processing in Python. PeerJ. 2014;2:e453.
13. Bradski G. The opencv library. Doctor Dobbs Journal. 2000 Nov;25(11):120-6.
14. Klöcknera A, Pintob N, Leed Yu, Catanzarod B, Ivanove P, Fas A. PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation. Parallel Computing. 2012 Mar;38(3):157-74.
15. Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science Engineering. 2007 May-Jun;9(3):90-5.
16. Pérez F, Granger BE. IPython: A System for Interactive Scientific Computing. Computing in Science Engineering. 2007 May-Jun;9(3):21-9.
17. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N. Computer control of microscopes using µManager. Curr Protoc Mol Biol. 2010 Oct;Chapter:Unit14.20.
18. Dvoretskiy EO. Razrabotka protokolov zakhvata izobrazhenii s ispol'zovaniem svobodnogo programmnogo obespecheniia Micro-manager [Development of protocols of capture of images with use of the free software of Micro-manager]. Studencheskaia meditsinskaia nauka XXI veka: materialy XIV mezhdunar nauch-prakt konf, posviashch 80-letiiu obrazovaniia VGMU, Vitebsk 23–24 okt 2014. Vitebsk, RB; 2014. Р. 59-60.
19. Dvoretsky E. Ki67 labeling index in breast carcinoma slice (colorized) [Internet]. Youtube. 2015 [cited 2015 Nov 15]. Available from: https://www.youtube.com/watch?v=jwfPKooYHZs.
20. van der Loos CM. Multiple Immunoenzyme Staining: Methods and Visualizations for the Observation With Spectral Imaging. J Histochem Cytochem. 2008 Apr;56(4):313-28.
21. Landini G. Colour Deconvolution [Internet]. 2015 [cited 2014 Oct 3]. Available from: http://mecourse.com/landinig/software/cdeconv/cdeconv.html.
22. Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001 Aug;23(4):291-9.
23. Viggiano JAS. Comparison of the accuracy of different white-balancing options as quantified by their color constancy. In: Sensors and Camera Systems for Scientific, Industrial, and Digital Photography. Applications V. San Jose, California; 2004. P. 323-33.
24. Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging. 2004 Jan;13(1):146-68.
25. Malpica N, de Solo´rzano CO, Vaquero JJ, Santos A, Vallcorba I, Garcı´a-Sagredo JM, del Pozo F. Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry. 1997;28:289-97.
26. Dvoretskiy EO. Vychislitel'naia optimizatsiia metoda spektral'nogo razdeleniia gistologicheskikh krasitelei [Computing optimization of a method of spectral separation of histological stains]. V: Aktual'nye voprosy sovremennoi meditsiny i farmatsii: materialy 67-i itogovoi nauch-prakt konf studentov i molodykh uchenykh, Vitebsk 23–24 apr 2015 g. Vitebsk, RB; 2015. Р. 699-701.
27. Dvoretsky E. Immunopy [Internet]. Github. 2015 [cited 2015 Oct 10]. Available from: https://github.com/radioxoma/immunopy.