Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2017.2.7

Nenartovich I.A.
Bronchial asthma epigenetics: literature review
Belarusian Medical Academy of Post-Graduate Education, Minsk, Republic of Belarus

Vestnik VGMU. 2017;16(2):7-14.

Abstract.
Bronchial asthma is recognized as a classic example of a multifactorial disease. This means that it develops under the influence of external environmental factors in the presence of a person’s genetic predisposition. The hereditary conditionality of bronchial asthma has been known for over a hundred years. More than 500,000 genetic variants have been studied to determine the association with asthma. The role of many genes in the pathogenesis of this disease has been ascertained. However, during the recent years more and more researches are devoted to epigenetics (studying the influence of external environmental factors on the activity of genes). The article presents literature review on the issue of genetics and epigenetics of bronchial asthma. The data on the influence of nutrition, fasting, consumption of vitamins, smoking, air and water pollution on the risk of asthma and its severity are also given. Special attention is paid to the role of external environmental factors influencing a person during the phase of intrauterine development.
Key words: bronchial asthma, genetic factors, epigenetics, external environmental factors.

References

1. Papadopoulos NG, Arakawa H, Carlsen KH, Custovic A, Gern J, Lemanske R, et al. International consensus on (ICON) pediatric asthma. Allergy. 2012 Aug;67(8):976-97. doi: http://dx.doi.org/10.1111/j.1398-9995.2012.02865.x
2. 2017 GINA Report, Global Strategy for Asthma Management and Prevention [Internet]. [cited 2017 Mar 24]. Available from: http://ginasthma.org/2017-gina-report-global-strategy-for-asthma-management-and-prevention/.  
3. European Academy of Allergy and Clinical Immunology; Akdis CA, Agache I, editors. Global Atlas of Asthma. Zurich; 2013. 179 p.
4. Portelli M, Sayers I. Genome-Wide Association Studies in Asthma [Internet]. 2017 [cited 2017 Apr 04]. Available from: http://www.els.net/WileyCDA/ElsArticle/refId-a0024639.html.
5. March ME, Sleiman PM, Hakonarson H. Genetic polymorphisms and associated susceptibility to asthma. Int J Gen Med. 2013 Apr;6:253-65. doi: http://dx.doi.org/10.2147/IJGM.S28156
6. Yu X, Yu C, Ren Z, Deng Y, Song J, Zhang H, et al. Genetic variants of 17q21 are associated with childhoodonset asthma and related phenotypes in a northeastern Han Chinese population: a case–control study. Tissue Antigens. 2014 May;83(5):330-6. doi: http://dx.doi.org/10.1111/tan.12342
7. Sleiman PM, Flory J, Imielinski M, Bradfield JP, Annaiah K, Willis-Owen SA, et al. Variants of DENND1B associated with asthma in children. N Engl J Med. 2010 Jan;362(1):36-44. doi: http://dx.doi.org/10.1056/NEJMoa0901867
8. Delyagin VM, Arakcheeva EE, Urazbagambetov A, Budchanov YuI. Genetics of asthma and atopy. Med Sovet. 2012;(5):33-9. (In Russ.)
9. Shaymuratov R, Vizel' AA. Long-term prognosis of asthma: from diagnosis to chronic process. Vestn Sovremen Klin Meditsiny. 2012;5(1):56-62. (In Russ.)
10. Portelli MA, Hodge E, Sayers I. Genetic risk factors for the development of allergic disease identified by genome-wide association. Clin Exp Allergy. 2015 Jan;45(1):21-31. doi: http://dx.doi.org/10.1111/cea.12327
11. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010 Sep;363(13):1211-21. doi: http://dx.doi.org/10.1056/NEJMoa0906312
12. Wan YI, Shrine NR, Soler Artigas M, Wain LV, Blakey JD, Moffatt MF, et al. Genome-wide association study to identify genetic determinants of severe asthma. Thorax. 2012 Sep;67(9):762-8. doi: http://dx.doi.org/10.1136/thoraxjnl-2011-201262
13. Bønnelykke K, Sleiman P, Nielsen K, Kreiner-Møller E, Mercader JM, Belgrave D, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014 Jan;46(1):51-5. doi: http://dx.doi.org/10.1038/ng.2830
14. Vanyushin BF. Epigenetics today and tomorrow. Vavilov Zhurn Genetiki Selektsii. 2013;17(4-2);805-32. (In Russ.)
15. Brunst KJ, Baccarelli AA, Wright RJ. Integrating mitochondriomics in children’s environmental health. J Appl Toxicol. 2015 Sep;35(9):976-91. doi: http://dx.doi.org/10.1002/jat.3182
16. Mineev VN, Sorokina LN, Nema MA, Uspenskaya YuK. Epigenetic mechanisms of action of transcription factors in the pathogenesis of bronchial asthma. Uchenye Zap SPbGMU im akad IP Pavlova. 2012;19(1):6-11. (In Russ.)
17. Batozhargalova BTs, Petrova NV, Timkovskaya ES, Mizernitskiy YuL, Zinchenko RA. Analysis of intergenic and gene-environmental interactions predisposing to bronchial asthma. Perm Med Zhurn. 2014;31(2):46-55. (In Russ.)
18. Peden DB. Does air pollution really cause allergy? Clin Exp Allergy. 2015 Jan;45(1):3-5. doi: http://dx.doi.org/10.1111/cea.12414
19. Herberth G, Bauer M, Gasch M, Hinz D, Röder S, Olek S. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol. 2014 Feb;133(2):543-50. doi: http://dx.doi.org/10.1016/j.jaci.2013.06.036
20. Kohli A, Garcia MA, Miller RL, Maher C, Humblet O, Hammond SK, et al. Secondhand smoke in combination with ambient air pollution exposure is associated with increasedx CpG methylation and decreased expression of IFN-gamma in T effector cells and Foxp3 in T regulatory cells in children. Clin Epigenetics. 2012 Sep;4(1):17. doi: http://dx.doi.org/10.1186/1868-7083-4-17
21. Lockett GA, Huoman J, Holloway JW. Does allergy beginin utero? Pediatr Allergy Immunol. 2015 Aug;26(5):394-402. doi: http://dx.doi.org/10.1111/pai.12408
22. Dudareva NI, Levdanskiy OG, Shimkevich AM, Aksenova EA, Danilenko NG, Denchuk LN. The function of external respiration in patients with bronchial asthma taking into account genetic polymorphism. Zdravookhranenie. 2013;(6):4-6. (In Russ.)
23. Romieu I, Torrent M, Garcia-Esteban R, Ferrer C, Ribas-Fitó N, Antó JM, et al. Maternal fish intake during pregnancy and atopy and asthma in infancy. Clin Exp Allergy. 2007 Apr;37(4):518-25.
24. Palmer DJ, Sullivan T, Gold MS, Prescott SL, Heddle R, Gibson RA, et al. Effect of n-3 long chain polyunsaturated fatty acid supplementation in pregnancy on infants’ allergies in first year of life: randomised controlled trial. BMJ. 2012;344:e184. doi: http://dx.doi.org/10.1136/bmj.e184
25. Leermakers ET, Sonnenschein-van der Voort AM, Heppe DH, de Jongste JC, Moll HA, Franco OH, et al. Maternal fish consumption during pregnancy and risks of wheezing and eczema in childhood: the Generation Study. Eur J Clin Nutr. 2013 Apr;67(4):353-9. doi: http://dx.doi.org/10.1038/ejcn.2013.36
26. Noakes PS, Vlachava M, Kremmyda L-S, Diaper ND, Miles EA, Erlewyn-Lajeunesse M. Increased intake of oily fish in pregnancy: effects on neonatal immune responses and on clinical outcomes in infants at 6 months. Am J Clin Nutr. 2012;95:395-404. doi: http://dx.doi.org/10.3945/ajcn.111.022954
27. Brown SB, Reeves KW, Bertone-Johnson ER. Maternal folate exposure in pregnancy and childhood asthma and allergy: a systematic review. Nutr Rev. 2014 Jan;72(1):55-64.
28. Campbell DE, Boyle RJ, Thornton CA, Prescott SL. Mechanisms of allergic disease–environmental and genetic determinants for the development of allergy. Clin Exp Allergy. 2015 May;45(5):844-58. doi: http://dx.doi.org/10.1111/cea.12531
29. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun. 2014 Nov;5:5592. doi: http://dx.doi.org/10.1038/ncomms6592
30. Holloway JW, Savarimuthu Francis S, Fong KM, Yang IA. Genomics and the respiratory effects of air pollution exposure. Respirology. 2012 May;17(4):590-600. doi: http://dx.doi.org/10.1111/j.1440-1843.2012.02164.x
31. Wang IJ, Karmaus WJ, Chen SL, Holloway JW, Ewart S. Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation. Clin Epigenetics. 2015 Mar;7:27. doi: http://dx.doi.org/10.1186/s13148-015-0060-x
32. Lim R, Fedulov AV, Kobzik L. Maternal stress during pregnancy increases neonatal allergy susceptibility: role of glucocorticoids. Am J Physiol Lung Cell Mol Physiol. 2014 Jul;307(2):L141-8. doi: http://dx.doi.org/10.1152/ajplung.00250.2013
33. Fossati S, Baccarelli A, Zanobetti A, Hoxha M, Vokonas PS, Wright RO, et al. Ambient particulate air pollution and microRNAs in elderly men. Epidemiology. 2014 Jan;25(1):68-78. doi: http://dx.doi.org/10.1097/EDE.0000000000000026
34. McGeachie MJ, Dahlin A, Qiu W, Croteau-Chonka DC, Savage J, Wu AC. The metabolomics of asthma control: a promising link between genetics and disease. Immun Inflamm Dis. 2015;3(3):224-38. doi: http://dx.doi.org/10.1002/iid3.61
35. Kahr N, Naeser V, Stensballe LG, Kyvik KO, Skytthe A, Backer V, et al. Gene–environment interaction in atopic diseases: a population-based twin study of early-life exposures. Clin Respir J. 2015 Jan;9(1):79-86. doi: http://dx.doi.org/10.1111/crj.12110
                                                                                                                                                                                    

Information about authors:
Nenartovich I.A. – Candidate of Medical Sciences, associate professor of the Chair of Ambulant Pediatrics, Belarusian Medical Academy of Post-Graduate Education.

Correspondence address: Republic of Belarus, 210013, Minsk, 3 P. Brovki str., 3, Belarusian Medical Academy of Post-Graduate Education. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Irina A. Nenartovich.

Поиск по сайту