Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2017.4.16

Gusakova E.A., Gorodetskaya I.V.
The effect of iodine-containing thyroid hormones on peripheral stress-limiting factors
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus

Vestnik VGMU. 2017;16(4):16-23.

Abstract.
The study of the patterns of stress development as well as of local factors that prevent or limit the intensity of stress reactions, is an important objective of physiology and medicine. The stimulating effect of iodine-containing thyroid hormones on the activity and content of peripheral components (cyclic adenine nucleotides, prostaglandins, antioxidants, heat shock proteins) of the stress-limiting system has been established. This effect is tissue-specific, depends on the age and sex of animals, as well as on the severity of thyroid dysfunction. The obtained data on the influence of iodine-containing thyroid hormones on the peripheral part of the stress-limiting system will broaden the fundamental ideas about the mechanisms of their action and role in the processes of phenotypic adaptation of the organism.
Key words: iodine-containing thyroid hormones, peripheral stress-limiting system.

References

1. Isaeva ER, Feshchenko MI. Psychological mechanisms of adaptation to a stress at patients with the psychosomatic and bound to a stress neurotic disorders. Vestn IuUrGU Ser Psikhologiia. 2010;(27): 91-6. (In Russ.)
2. Bozhko AP, Gorodetskaya IV. Role of albuminous synthesis in realization of tire-tread cardial effects of thyroid hormones at an immobilized stress at rats. Ros Fiziol Zhurn im IM Sechenova. 2000;86(3):349-57. (In Russ.)
3. Gorodetskaya IV, Evdokimova OV. Influence of iodinated thyroid hormones on an expression of early genes with-fos and with-jun in a myocardium of rats at a stress. Ves NAN Belarusі Ser Med Navuk. 2014;(2):42-7. (In Russ.)
4. Koryt'ko SS, Khmara IM, Salko OB, Antipov VV. Illnesses of endocrine system in Belarus – statistical and demographic comparisons. Med Novosti. 2013;(3):42-8. (In Russ.)
5. Cidorenko VN. Role of cyclic nucleotides in a regulation of a tonus of vessels of a placenta at the pregnancy complicated by a gestosis. Med Zhurn. 2007;(2):1-6. (In Russ.)
6. Yakovlev AV, Yakovleva OV, Sitdikova GF. Adenilattsiklazny and guanilattsiklazny systems of intracellular secondary intermediaries: ucheb posobie. Kazan, RF: Izd-vo KGU; 2009. 48 р. (In Russ.)
7. Famulski KS, Szymańska G Szymański P, Sarzała MG. Hyperthyroidism affects the activity of a cAMP-dependent protein kinase and protein phosphorylation in heart sarcolemma. Biomed Biochim Acta. 1987;46(8-9):S448-51.
8. Rapiejko PJ, Malbon CC. Short-term hyperthyroidism modulates adenosine receptors and catalytic activity of adenylate cyclase in adipocytes. Biochem J. 1987 Feb;241(3):765-71.
9. Mano T, Iwase K, Sawai Y, Oda N, Nishida Y, Mokuno T, et al. Changes of calmodulin concentration and cyclic 3',5'-nucleotide phosphodiesterase activities in cardiac muscle of hyper- and hypothyroid rats. J Endocrinol. 1994 Dec;143(3):515-20.
10. Goswami A, Rosenberg IN. Effects of Thyroid Status on Membrane-bound Low Km Cyclic Nucleotide Phosphodiesterase Activities in Rat Adipocytes. J Biol Chemistry. 1985 Jan;260(1):82-5.
11. Vladimirov YuA. The activated chemoluminescence and bioluminescence as the tool of medicobiological researches. Sorosov Obrazovat Zhurn. 2001;7(1):16-23. (In Russ.)
12. Vladimirov YuA, Archakov AI. Perekisny oxidation of lipids in biological membranes. Moscow, RF: Nauka; 1972. 252 р. (In Russ.)
13. Ďuračková Z. Free Radicals and Antioxidants for Non-Experts. In: Laher I, ed. Systems biology of free radicals and antioxidants. Berlin: Springer; 2014. Р. 3-38.
14. Chanchaeva EA, Ayzman RI, Gerasev AD. Modern idea of the antioxidatic system of a human body. Ekologiia Cheloveka. 2013;(7):50-8. (In Russ.)
15. Khavinson VKh, Barinov VA, Arutyunyan AV, Malinin VV. Free radical oxidation and aging. Saint Petersburg, RF: Nauka; 2003. 327 р. (In Russ.)
16. Gorbenko MV, Popova TN, Shul'gin KK, Popov SS. Influence of a melaksen and valdoksan on activity superoxide dismutases and catalases at an experimental hyperthyroidism. Khimiko-Farmatsevt Zhurn. 2013;47(11):7-10. (In Russ.)
17. Mohamed TM, Tousson E, Beltagy DM, Samy El Said A. Biochemical Studies in Experimentally Induced-hyperthyroid Rats Treated with Folic and Ascorbic Acid. J Biomed Biotechnol. 2014;2(4):60-5.
18. Lobyreva OV, Abdullina GM, Kamilov FKh. Activity of antioxidatic enzymes of a liver of rats at an experimental hypothyrosis and its correction by an iodinated polisakharidny complex. Om Nauch Vestn. 2011;104(1):92-4. (In Russ.)
19. Sajadian M, Hashemi M, Salimi S, Nakhaee A. The effect of experimental thyroid dysfunction on markers of oxidative stress in rat pancreas. Drug Dev Res. 2016 Jun;77(4):199-205. doi: http://dx.doi.org/10.1002/ddr.21312
20. Gorodetskaya IV. Korenevskaya NA. Dependence of changes of perekisny oxidation of lipids and antioxidatic activity in a myocardium at acute and chronic stress from the thyroid status of an organism. Patol Fiziologiia Eksperim Terapiia. 2010;(4):38-42. (In Russ.)
21. Gorodetskaya IV, Evdokimova OV. Influence of change of the thyroid status on enzymatic and non-enzymatic components of antioxidatic system of an organism at action of stress factors of various nature. Zhurn Grodn Gos Med Un-ta. 2013;(3):80-3. (In Russ.)
22. Lemza SV, Khamaeva NA, Toropova AA, Petrov EV. Tireoton as the phytoproofreader of dysfunctions of mitochondrions of a brain at an experimental hypothyrosis. Sibir Med Zhurn. 2015;(2):112-5. (In Russ.)
23. Naazeri S, Rostamian M, Hedayati M. Impact of thyroid dysfunction on antioxidant capacity, superoxide dismutase and catalase activity. ZJRMS. 2014;16(1):51-4.
24. Henstridge DC. Febbraio MA, Hargreaves M. Heat shock proteins and exercise adaptations. Our knowledge thus far and the road still ahead. J Appl Physiol (1985). 2016 Mar;120(6):683-91. doi: http://dx.doi.org/10.1152/japplphysiol.00811.2015
25. Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22:631-77. doi: http://dx.doi.org/10.1146/annurev.ge.22.120188.003215
26. Hightower L, Hendershot L. Molecular chaperones and the heat shock response at Cold Spring Harbor. Cell Stress Chaperones. 1997 Mar;2(1):1-11.
27. Whitham M, Fortes MB. Heat shock protein 72: release and biological significance during exercise. Front Biosci. 2008 Jan;13:1328-39.
28. Schirmer EC, Glover JR, Singer MA, Lindquist S. HSP l00/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci. 1996 Aug;21(8):289-96.
29. Kozeko LE. Proteins of thermal shock 90 kd: variety, structure and functions. Tsitologiia. 2010;52(11):893-910. (In Russ.)
30. Bansal PK, Abdulle R, Kitagawa K. Sgt1 associates with Hsp90: an initial step of assembly of the core kinetochore complex. Mol Cell Biol. 2004 Sep;24(18):8069-79.
31. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell. 1998 Aug;94(4):471-80.
32. Pratt WB, Morishima Y, Osawa Y. The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J Biol Chem. 2008 Aug;283(34):22885-9. doi: http://dx.doi.org/10.1074/jbc.R800023200
33. Pearl LH, Prodromou C, Workman P. The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J. 2008 Mar;410(3):439-53. doi: http://dx.doi.org/10.1042/BJ20071640
34. Habich C, Burkart V. Heat shock protein 60: regulatory role on innate immune cells. Cell Mol Life Sci. 2007 Mar;64(6):742-51. doi: http://dx.doi.org/10.1007/s00018-007-6413-7
35. Sun Y, MacRae TH. Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci. 2005 Nov;62(21):2460-76. doi: http://dx.doi.org/10.1007/s00018-005-5190-4
36. Lindner RA, Treweek TM, Carver JA. The molecular chaperone α-crystallin is in kinetic competition with aggregation to stabilize a monomeric molten-globule form of α-lactalbumin. Biochem J. 2001 Feb;354(Pt 1):79-87.
37. Wagstaff MJ, Collaço-Moraes Y, Smith J, de Belleroche JS, Coffin RS, Latchman DS. Protection of neuronal cells from apoptosis by Hsp27 delivered with a herpes simplex virus-based vector. J Biol Chem. 1999 Feb;274(8):5061-9.
38. Maloyan А, Horowitz M. β-Adrenergic signaling and thyroid hormones affect HSP72 expression during heat acclimation. J Appl Physiol. 2002;93(1):107-15.
39. Graham G, Sharp PJ, Li Q, Wilson PW, Talbot RT, Downing A, et al. HSP90B1, a thyroid hormone-responsive heat shock protein gene involved in photoperiodic signaling. Brain Res Bull. 2009 May;79(3-4):201-7. doi: http://dx.doi.org/10.1016/j.brainresbull.2009.01.010
40. Malyshev IYu, Golubeva LYu, Bozhko AP, Gorodetskaya IV. The role of the local stress-limiting systems of the myocardium in the cardiac protective effect of small doses of thyroid hormones in immobilization stress in rats. Ros Fiziol Zhurn. 2000;(1):62-7. (In Russ.)
41. Evdokimova OV, Gorodetskaya IV. Influence of iodinated thyroid hormones on synthesis of proteins of thermal shock in a brain of rats at a stress and adaptation. Vestn VGMU. 2015;14(1):18-25. (In Russ.)
42. Jensen ТJ, Nedergaard OA. Modulation of norepinephrine release from sympathetic neurons of the rabbit aorta by prejunctional prostanoid receptors. J Pharmacol Exp Ther. 1999 Oct;291(1):7-11.
43. Wendel TJ, Strandhoy W. The effects of prostaglandins E2 and F2α on synaptosomal accumulation and release of 3H-norepinephrine. Prostaglandins. 1978 Sep;16(3):441-9. doi: http://dx.doi.org/10.1016/0090-6980(78)90223-X
44. Krechko TA; L'vov GMU. Influence of Prostaglandinums on a condition of a hemostasis, perekisny oxidation of lipids and physiological antioxidatic system of an organism: avtoref dis … kand med nauk: 14.00.17. Lviv, Ukraine; 1991. 24 р. (In Russ.)
45. Klaushofer K, Hoffmann O, Gleispach H, Leis HJ, Czerwenka E, Koller K, et al. Bone-resorbing activity of thyroid hormones is related to prostaglandin production in cultured neonatal mouse calvaria. J Bone Miner Res. 1989 Jun;4(3):305-12. doi: http://dx.doi.org/10.1002/jbmr.5650040304
46. Kayhan E, Ok E, Sozuer E, Kerek M. Prostaglandine-E2 and I2 differences in hyperthyroidism before and after medical treatment. Turkish J Surgery. 2000;16(4):234-9.
47. Hapon MB, Motta AB, Ezquer M, Bonafede M, Jahn GA. Hypothyroidism prolongs corpus luteum function in the pregnant rat. Reproduction. 2007 Jan;133(1):197-205. doi: http://dx.doi.org/10.1530/REP-06-0035

Information about authors:
Gusakova E.A. – Candidate of Biological Sciences, associate professor of the Chair of General, Physical and Colloid Chemistry, Vitebsk State Order of Peoples’ Friendship Medical University;
Gorodetskaya I.V. – Doctor of Medical Sciences, professor, dean of the Medical Faculty, Vitebsk State Order of Peoples’ Friendship Medical University.

Correspondence address: Republic of Belarus, 210023, Vitebsk, 27 Frunze ave., Vitebsk State Order of Peoples’ Friendship Medical University, Medical Faculty. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Irina V. Gorodetskaya.
                                   

Поиск по сайту