A+ A A-

Download article


Pabiarzhyn V.V.1, Pashinskaya Е.S.1, Semenov V.M.1, Hancharou A.Y.2
Methodological aspects of setting up oncological models under experimental conditions
1Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus
2Republican Practical-Scientific Centre of Epidemiology & Microbiology, Minsk, Republic of Belarus

Vestnik VGMU. 2018;17(6):32-45.

The body consists of millions of cells, each of which has certain functions. Normal cells grow, divide and die in a certain conformity. This process is controlled by the body at the molecular-genetic level. The rate of cell division is different in various organs and tissues. In those cases where the structure of cells varies under the influence of different factors, cells divide without control, with subsequent migration beyond their usual boundaries to other organs and tissues. There they form tumors or remain at the stage of metastases. Almost all tumors develop in normal tissues, but most often in those where the rate of cell division is higher.
According to the spread of cancer the following types are in the lead: lung cancer, stomach cancer, colon cancer, liver cancer, breast, ovarian and cervical cancer.
Despite the fact that cancer, as an oncological disease, has been known for a rather long time, its experimental simulation is a difficult and multistage process. Simulation of a malignant process in laboratory conditions in vivo and in vitro has been noted in scientific literature as an important scientific achievement. The modelling of oncological processes in the experiment with the use of the latest achievements of science, medicine and technology will provide an opportunity to clarify the causes of the onset and pathogenesis of the tumor process, to elaborate methods of its prevention and treatment.
Key words: cancer, animals, model, cell cultures, ligation, human being, tumors.


1. Timofeevskiy AD, red. Models and methods of experimental Oncology: prakt posobie. Moscow, RF: Medgiz; 1960. 246 р. (In Russ.)
2. Popova NA. Models of experimental Oncology. Sorosov Obshcheobrazovat Zhurn. 2000;6(8):33-8. (In Russ.)
3. Oncology news. [sait]. Moscow, RF; 2009-2011. Rezhim dostupa: Data dostupa: 30.06.2018. (In Russ.)
4. Markov AV. Spectrum of biological activity of new derivatives of glycyrrhetic acid and molecular mechanisms of their action: avtoref dis ... kand biol nauk: 03.01.04. Novosibirsk, RF; 2015. 22 р. (In Russ.)
5. Ergazina MZh, Dzhangel'dina ZN, Krasnoshtanov AV, Krasnoshtanov VK. Structural changes in the thymus of laboratory rats in the development of graft and spontaneous tumors. Vestn KazNMU. 2016;(4):287-92. (In Russ.)
6. Kunts TA, Vakulin GM, Ovsyanko EV, Efremov AV. Liver of rats at advanced stages of development of carcinosarcoma Walker 256. Vestn NGU Ser Biologiia Klin Meditsina. 2011;9(vyp 2):126-9. (In Russ.)
7. Lebedinskaya OV, Kiselevskiy MV, Lebedinskaya EA, Donenko FV, Bolotova EI, Buranova TYu, i dr. Morphological features of mouse liver with metastatic tumor process. Sovremen Naukoem Tekhnologii. 2006;(5):32-3. (In Russ.)
8. Dzhadranov ES, Ergazina MZh, Dzhangel'dina ZN, Krasnoshtanov AV. Structural changes in perelivnoj experimental tumors of rat lymphosarcoma after treatment with cyclophosphamide. Vestn KazNMU. 2015;(3):213-5. (In Russ.)
9. Korochkin RB, Verbitskiy AA, Aleshkevich VN, Sandul AV. Cultivation of viruses in cell cultures: ucheb-metod posobie. Vitebsk, RB: VGAVM; 2010. 43 р. (In Russ.)
10. Tillmann T, Kamino K, Mohr U. Incidence and spectrum of spontaneous neoplasms in male and female CBA/J mice. Exp Toxicol Pathol. 2000 Jun;52(3):221-5. doi:
11. Reshetov IV, Daykhes NA, Karkishchenko NN, Strel'tsova EA, Stepanov SO, Semenov KhKh, i dr. Experimental model of head and neck tumor for potential targeted therapy. Sib Onkol Zhurn. 2009;(5):43-8. (In Russ.)
12. Gol'dberg VE, Matyash MG. Modern achievements of drug therapy of malignant neoplasms. Biul SO RAMN. 2004;(2):36-40. (In Russ.)
13. Kaledin VI, Popova HA, Andreeva EM. Study of the effectiveness of mono-and polychemotherapy on the model of mouse lymphosarcoma, insensitive to the induction of apoptosis. Vopr Onkologii. 2006;52(1):70-3. (In Russ.)
14. Kaledin VI, Nikolin VP, Ageeva TA, Timofeeva OA, Filipenko ML, Ronichevskaia GM, i dr. Cyclophosphamide induced apoptosis of murine lymphosarcoma cells in vivo. Vopr Onkologii. 2000;46(5):588-93. (In Russ.)
15. Mironova N, Shklyaeva O, Andreeva E, Popova N, Kaledin V, Nikolin V, et al. Animal model of drug-resistant tumor progression. Ann N Y Acad Sci. 2006 Dec;1091:490-500. doi:
16. Andreeva EM, Mironova NL, Shklyaeva OA, Popova NA, Zenkova MA. Participation of genes mdr1, mrp1, p53 and bcl-2 in the formation of resistance of mouse lymphosarcoma LS cells to the therapeutic action of cyclophosphane. Vestn NGU Ser Biologiia Klin Meditsina. 2006;4(vyp 1):21-6. (In Russ.)
17. Gershanovich ML, Filov VA, Akimov MA, Akimov AA. Introduction to chemotherapy of malignant tumors. Saint-Petersburg, RF: Sotsis; 1999. 143 р. (In Russ.)
18. Pfreundschuh M, Trümper L, Osterborg A, Pettengell R, Trneny M, Imrie K, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good prognosis diffuse large-B-cell lymphoma : a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006 May;7(5):379-91. doi:
19. Bogner C, Dechow T, Ringshausen I, Wagner M, Oelsner M, Lutzny G, et al. Immunotoxin BL22 induces apoptosis in mantle cell lymphoma (MCL) cells dependent on Bcl-2 expression. Br J Haematol. 2010 Jan;148(1):99-109. doi:
20. Sof'ina 3P, Syrknn AB, Goldin A, Klyayn A, red. Experimental evaluation of anticancer drugs in the USSR and the USA. Moscow, RF: Meditsina; 1980. 296 р. (In Russ.)
21. Sidorenko YuS, Frantsiyants EM, Tkalya LD; zaiavitel' i patentoobladatel' Rostov nauch-issled onkol in-t Rosmedtekhnologii. Pat 2388064 Rossiiskaia Federatsiia, MPK G 09 B 23/28. The method of playing a malignant process in the experiment. № 2008133088/14; zaiavl 11.08.08; opubl 27.04.10, Biul № 12. 7 р. (In Russ.)
22. Istomin YuP, Aleksandrova EN, Chalov VN, Tserkovskiy DA; zaiavitel’ i patentoobladatel’ Resp nauch-prakt tsentr onkologii i med radiologii im NN Aleksandrova. Pat 19417 Resp Belarus’. Method of sono-photodynamic therapy of subcutaneous C6 glioma in rats, MPK A 61 N 5/067, A 61 N 7/00. № a20120970; zaiavl 27.06.12; opubl 28.02.14. (In Russ.)
23. Fadeeva EV. Experimental model of melanoma B16 and immunotherapy methods. Mezhdunar Zhurn Eksperim Obrazovaniia. 2010;(8):49-50. (In Russ.)
24. Cao Y, Marks JD, Huang Q, Rudnick SI, Xiong C, Hittelman WN, et al. Single-chain antibody-based immunotoxins targeting Her2/neu: design optimization and impact of affinity on antitumor efficacy and off-target toxicity. Mol Cancer Ther. 2012 Jan;11(1):143-53. doi:
25. Choudhary S, Mathew M, Verma RS. Therapeutic potential of anticancer immunotoxins. Drug Discov Today. 2011 Jun;16(11-12):495-503. doi:
26. Sen'kova AV. Structural changes in the tumor and liver of mice with the increase of multiple drug resistance of transplanted lymphosarcoma RLS40 under polychemotherapy: dis ... kand med nauk: 14.03.02. Novosibirsk, RF; 2010. 140 р. (In Russ.)
27. Christensen J, Vonwil D, Shastri VP. Non-Invasive In Vivo Imaging and Quantification of Tumor Growth and Metastasis in Rats Using Cells Expressing Far-Red Fluorescence Protein. PLoS One. 2015 Jul 17;10(7):e0132725. doi:
28. Kireeva GS. Intraperitoneal chemoperfusion treatment of disseminated ovarian cancer in experiment: dis ... kand biol nauk: 14.01.12. Saint-Petersburg, RF; 2015. 124 р. (In Russ.)
29. Chu J, Haynes RD, Corbel SY, Li P, González-González E, Burg JS, et al. Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nat Methods. 2014 May;11(5):572-8. doi:
30. Gerashchenko TS, Denisov EV, Litviakov NV, Zavyalova MV, Vtorushin SV, Tsyganov MM, et al. Intratumor heterogeneity: nature and biological significance. Biochemistry (Mosc). 2013 Nov;78(11):1201-15. doi:
31. Kit OI, Kaplieva IV, Frantsiyants EM, Trepitaki LK. Method for modeling lymphogenic and hematogenous metastasis of murine melanoma B16 in rats. Biul Eksperim Biologii Meditsiny. 2017;163(6):759-62. (In Russ.)
32. Kiselev VI, Drukh VM, Kuznetsov IN, Muyzhnek EL, Pchelintseva OI. A study of the effectiveness of the new pharmaceutical compositions diindolylmethane regarding suppression of xenograft tumors of the endometrium [Elektronnyi resurs]. Meditsina i obrazovanie v Sibiri. 2014;(5). Rezhim dostupa: Data dostupa: 19.11.2018. (In Russ.)
33. Sokolova EA. The fluorescent model of HER2-hyperexpression tumors human ovaries and its use to assess the effectiveness of targeted immunotoxin on the basis of exotoxin A: dis ... kand biol nauk: 03.01.02. Moscow, RF; 2016. 134 р. (In Russ.)

Information about authors:
Pabiarzhyn V.V. – Candidate of Biological Sciences, associate professor, doctoral candidate of the Chair of Infectious Diseases, Vitebsk State Order of Peoples’ Friendship Medical University;
Pashinskaya Е.S. – Candidate of Biological Sciences, associate professor, doctoral candidate of the Chair of Infectious Diseases, Vitebsk State Order of Peoples’ Friendship Medical University;
Semenov V.M. – Doctor of Medical Sciences, professor, head of the Chair of Infectious Diseases, Vitebsk State Order of Peoples’ Friendship Medical University;
Hancharou A.Y. – Candidate of Medical Sciences, head of the Immunology and Cell Biotechnology Laboratory, Republican Practical-Scientific Centre of Epidemiology & Microbiology.

Correspondence address: Republic of Belarus, 210009, Vitebsk, 27 Frunze ave., Vitebsk State Order of Peoples’ Friendship Medical University, Chair of Infectious Diseases. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Vyacheslav V. Pobyarzhin.

Поиск по сайту