Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2019.5.26

Minina E.S., Novikov P.D., Senkovich S.A.
Eosinophil extracellular traps: their  role in health and disease
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus

Vestnik VGMU. 2019;18(5):26-34.

Abstract.
The review presents the current data about a new mechanism of antimicrobial action of eosinophilic granulocytes – the formation of eosinophil extracellular traps (EETs). The extraction of extracellular DNA traps was also detected in neutrophils, mast cells, monocytes, tissue macrophages and lymphocytes. The formation of extracellular traps, apart from  humans, was observed in fish, bull, horse, cat, mouse and hen. The death of eosinophils with the release of extracellular DNA traps is called «EETosis». The main structural components of eosinophil extracellular traps, factors stimulating their appearance and mechanisms of the antimicrobial action of eosinophil extracellular  DNA traps are described in the article. The main  infectious, inflammatory and allergic diseases , in which EETs formation was observed, are presented in this review. The study of new immunological mechanisms of the human body  defense, such as the formation of extracellular traps by  various immune system cells, appears to be of great interest not only for scientists, but also for practicing physicians.
Key words: eosinophils, eosinophil extracellular traps, EETosis, DNA.

References

1. Minina ES, Novikov PD. Eosinophilic extracellular traps: mechanisms of formation, functions. Immunopatologiia Allergologiia Infektologiia. 2019;(2):48-58. (In Russ.)
2. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008 Sep;14(9):949-53. doi: http://dx.doi.org/10.1038/nm.1855
3. Ueki S, Melo RC, Ghiran I, Spencer LA, Dvorak AM, Weller PF. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 2013 Mar;121(11):2074-83. doi: http://dx.doi.org/10.1182/blood-2012-05-432088
4. Ueki S, Konno Y, Takeda M, Moritoki Y, Hirokawa M, Matsuwaki Y, et al. Eosinophil ETosis-derived DNA traps: their presence in secretions and their functional attributes. J Allergy Clin Immunol. 2016 Jan;137(1):258-267. doi: http://dx.doi.org/10.1016/j.jaci.2015.04.041
5. Omokawa A, Ueki S, Kikuchi Y, Takeda M, Asano M, Sato K, et al. Mucus plugging in allergic bronchopulmonary aspergillosis: implication of the eosinophil DNA traps. Allergol Int. 2018 Apr;67(2):280-282. doi: http://dx.doi.org/10.1016/j.alit.2017.08.002
6. Muniz VS, Silva JC, Braga YAV, Melo RCN, Ueki S, Takeda M, et al. Eosinophils release extracellular DNA traps in response to aspergillus fumigates. J Allergy Clin Immunol. 2018 Feb;141(2):571-585.e7. doi: http://dx.doi.org/10.1016/j.jaci.2017.07.048
7. Dworski R, Simon HU, Hoskins A, Yousefi S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J Allergy Clin Immunol. 2011 May;127(5):1260-6. doi: http://dx.doi.org/10.1016/j.jaci.2010.12.1103
8. Simon D, Hoesli S, Roth N, Staedler S, Yousefi S, Simon HU. Eosinophil extracellular DNA traps in skin diseases. J Allergy Clin Immunol. 2011 Jan;127(1):194-9. doi: http://dx.doi.org/10.1016/j.jaci.2010.11.002
9. Kerstan A, Simon HU, Yousefi S, Leverkus M. Extensive accumulation of eosinophil extracellular traps in bullous delayed-pressure urticaria: a pathophysiological link? Br J Dermatol. 2012 May;166(5):1151-2. doi: http://dx.doi.org/10.1111/j.1365-2133.2012.10848.x
10. Cunha AA, Porto BN, Nuñez NK, Souza RG, Vargas MH, Silveira JS, et al. Extracellular DNA traps in bronchoalveolar fluid from a murine eosinophilic pulmonary response. Allergy. 2014 Dec;69(12):1696-700. doi: http://dx.doi.org/10.1111/all.12507
11. Simon D, Radonjic-Hösli S, Straumann A, Yousefi S, Simon HU. Active eosinophilic esophagitis is characterized by epithelial barrier defects and eosinophil extracellular trap formation. Allergy. 2015 Apr;70(4):443-52. doi: http://dx.doi.org/10.1111/all.12570
12. Gon Y, Hashimoto S. Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol Int. 2018 Jan;67(1):12-17. doi: http://dx.doi.org/10.1016/j.alit.2017.08.011
13. Kim BE, Leung DYM. Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res. 2018 May;10(3):207-215. doi: http://dx.doi.org/10.4168/aair.2018.10.3.207
14. Gevaert E, Zhang N, Krysko O, Lan F, Holtappels G, De Ruyck N, et al. Extracellular eosinophilic traps in association with Staphylococcus aureus at the site of epithelial barrier defects in patients with severe airway inflammation. J Allergy Clin Immunol. 2017 Jun;139(6):1849-1860.e6. doi: http://dx.doi.org/10.1016/j.jaci.2017.01.019
15. Soragni A, Yousefi S, Stoeckle C, Soriaga AB, Sawaya MR, Kozlowski E, et al. Toxicity of eosinophil MBP is repressed by intracellular crystallization and promoted by extracellular aggregation. Mol Cell. 2015 Mar;57(6):1011-1021. doi: http://dx.doi.org/10.1016/j.molcel.2015.01.026
16. Blanchard C, Mingler MK, McBride M, Putnam PE, Collins MH, Chang G, et al. Periostin facilitates eosinophil tissue infiltration in allergic lung and esophageal responses. Mucosal Immunol. 2008 Jul;1(4):289-96. doi: http://dx.doi.org/10.1038/mi.2008.15
17. Persson C, Ueki S. Lytic eosinophils produce extracellular DNA traps as well as free eosinophil granules. J Allergy Clin Immunol. 2018 Mar;141(3):1164. doi: http://dx.doi.org/10.1016/j.jaci.2017.05.047
18. Morshed M, Yousefi S, Stöckle C, Simon HU, Simon D. Thymic stromal lymphopoietin stimulates the formation of eosinophil extracellular traps. Allergy. 2012 Sep;67(9):1127-37. doi: http://dx.doi.org/10.1111/j.1398-9995.2012.02868.x
19. Liu YJ, Soumelis V, Watanabe N, Ito T, Wang YH, Malefyt Rde W, et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol. 2007;25:193-219. doi: http://dx.doi.org/10.1146/annurev.immunol.25.022106.141718
20. Shapiro SD. The pathogenesis of emphysema: the elastase:antielastase hypothesis 30 years later. Proc Assoc Am Physicians. 1995 Oct;107(3):346-52.
21. Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun. 2010;2(3):216-27. doi: http://dx.doi.org/10.1159/000284367
22. Singh D, Kolsum U, Brightling CE, Locantore N, Agusti A, Tal-Singer R. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J. 2014 Dec;44(6):1697-700. doi: http://dx.doi.org/10.1183/09031936.00162414
23. Uribe Echevarría L, Leimgruber C, García González J, Nevado A, Álvarez R, García LN, et al. Evidence of eosinophil extracellular trap cell death in COPD: does it represent the trigger that switches on the disease? Int J Chron Obstruct Pulmon Dis. 2017 Mar;12:885-896. doi: http://dx.doi.org/10.2147/COPD.S115969
24. Grabcanovic-Musija F, Obermayer A, Stoiber W, Krautgartner WD, Steinbacher P, Winterberg N, et al. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir Res. 2015 May;16:59. doi: http://dx.doi.org/10.1186/s12931-015-0221-7
25. Uribe Echevarría L, Leimgruber C, García González J, Nevado A, Álvarez R, García LN, et al. Evidence of eosinophil extracellular trap cell death in COPD: does it represent the trigger that switches on the disease? Int J Chron Obstruct Pulmon Dis. 2017 Mar ;12:885-896. doi: http://dx.doi.org/10.2147/COPD.S115969
26. Simon D, Simon HU, Yousefi S. Extracellular DNA traps in allergic, infectious, and autoimmune diseases. Allergy. 2013 Apr;68(4):409-16. doi: http://dx.doi.org/10.1111/all.12111
27. Choi Y, Le Pham D, Lee D-H, Lee S-H, Kim S-H, Park H-S. Biological function of eosinophil extracellular traps in patients with severe eosinophilic asthma. Exp Mol Med. 2018 Aug;50(8):104. doi: http://dx.doi.org/10.1038/s12276-018-0136-8
28. Akdis M, Aab A, Altunbulakli C, Azkur K, Costa RA, Crameri R, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016 Oct;138(4):984-1010. doi: http://dx.doi.org/10.1016/j.jaci.2016.06.033
29. Shichijo K, Makiyama K, Wen CY, Matsuu M, Nakayama T, Nakashima M, et al. Antibody to eosinophil cationic protein suppresses dextran sulfate sodium-induced colitis in rats. World J Gastroenterol. 2005 Aug;11(29):4505-10. doi: http://dx.doi.org/10.3748/wjg.v11.i29.4505
30. Mukherjee M, Bulir DC, Radford K, Kjarsgaard M, Huang CM, Jacobsen EA, Ochkur SI, et al. Sputum autoantibodies in patients with severe eosinophilic asthma. J Allergy Clin Immunol. 2018 Apr;141(4):1269-1279. doi: http://dx.doi.org/10.1016/j.jaci.2017.06.033
31. Mukherjee M, Thomas SR, Radford K, Dvorkin-Gheva A, Davydchenko S, Kjarsgaard M, et al. Sputum ANCA in serum ANCA-negative eosinophilic granulomatosis with polyangiitis. Am J Respir Crit Care Med. 2019 Jan;199(2):158-170. doi: http://dx.doi.org/10.1164/rccm.201804-0809OC
32. Bradding P, Walls A, Holgate S. The role of the mast cell in the pathophysiology of asthma. J Allergy Clin Immunol. 2006 Jun;117(6):1277-84
33. Dunican EM, Elicker BM, Gierada DS, Nagle SK, Schiebler ML, Newell JD, et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest. 2018 Mar;128(3):997-1009. doi: http://dx.doi.org/10.1172/JCI95693
34. Erjefält JS, Greiff L, Andersson M, Matsson E, Petersen H, Linden M, et al. Allergeninduced eosinophil cytolysis is a primary mechanism for granule protein release in human upper airways. Am J Respir Crit Care Med. 1999 Jul;160(1):304-12.
35. Melo RC, Liu L, Xenakis JJ, Spencer LA. Eosinophil-derived cytokines in health and disease: unraveling novel mechanisms of selective secretion. Allergy. 2013 Mar;68(3):274-84. doi: http://dx.doi.org/10.1111/all.12103
36. Spencer L, Bonjour K, Melo RCN, Weller PF. Eosinophil secretion of granule-derived cytokines. Front Immunol. 2014;5:496. doi: http://dx.doi.org/10.3389/fimmu.2014.00496
37. Pertiwi KR, de Boer OJ, Mackaaij C, Pabittei DR, de Winter RJ, Li X, et al. Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time-dependent manner during atherothrombosis. J Pathol. 2019 Apr;247(4):505-512. doi: http://dx.doi.org/10.1002/path.5212

Information about authors:
Minina E.S. – Candidate of Medical Sciences, lecturer of the Chair of Pediatrics, Vitebsk State Order of Peoples’ Friendship Medical University;
Novikov P.D. – Doctor of Medical Sciences, professor of the Chair of Clinical Immunology and Allergology with the course of the Faculty for Advanced Training and Retraining, Vitebsk State Order of Peoples’ Friendship Medical University;
Senkovich S.A. – Candidate of Medical Sciences, associate professor of the Chair of Clinical Microbiology, Vitebsk State Order of Peoples’ Friendship Medical University.

Correspondence address: Republic of Belarus, 210009, Vitebsk, 27 Frunze ave., Vitebsk State Order of Peoples’ Friendship Medical University, Chair of Pediatrics. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Elena S. Minina.
                                               

Поиск по сайту