A+ A A-

Download article


Pugach V.V.
Species composition of microorganisms being a part of microbiocenosis of the swimming-pools
Republican Research and Practical Center for Epidemiology and Microbiology, Minsk, Republic of Belarus

Vestnik VGMU. 2019;18(5):35-44.

Objectives. To determine species composition of microorganisms (MO), being a part of microbiocenosis of the swimming – pools (SP).
Material and methods. Water samples and swabs from the  surfaces of the premises and technological equipment were taken from 9 SP. Sampling, transportation and analysis were provided according to active  legislation. MO identification resulted from bacteriological survey and with the help of the analyzer Vitek 2 Compact (Biomerieux, France).
Results. 95 (46.1%) strains of gram-negative bacteria (GNB), 86 (41.7%) strains of gram-positive bacteria (GPB), 11 (5.3%) strains of molds, 8 (3.9%) strains of dermatophytes and 6 (2.9%) strains of yeast-like MO were isolated.
The majority of all strains were isolated from the walls in shower-baths (67 strains, 32.5%) and foot baths (61 strain, 29.6%), the minority were found in water samples taken from 25 cm depth (8 strains, 3.9%). The most frequent contamination level in the SP was 103 CFU/ml, 61% of MO were isolated in quantities of 103-107 CFU/ml.
The majority of GPB belonged to Staphylococcus spp. (40 strains, 46.5%). The part of S. aureus (13 strains) made up  32.5% of all staphylococci found. In the structure of GNB the group of non-fermentative bacteria (NGNB) prevailed (84 strains (88.4% of GNB)).
Conclusions. Low contamination levels of SP water cannot serve as an accurate and sufficient indicator of their  microbiological safety. High levels of environmental contamination with MO create a pre-condition for SP visitors of getting an infection, which may lead to the increased quantity of infections, associated with the SP visits, especially among immunocompromised persons.
Key words: swimming-pools, contamination, environment, microorganisms.


1. Centers for Disease Control and Prevention. Recreational Water Illness [Internet]. 2019 [cited 2019 Sep 19]. Available from:
2. GOST R 51592-2000. Water. General sampling requirements [Elektronnyi resurs]. Vved 2001–07–01. Rezhim dostupa: Data dostupa: 19.09.2019. (In Russ.)
3. STB GOST R 51593-2001. Drinking water. Sample selection [Elektronnyi resurs]. Vved 2002–11–01. Rezhim dostupa: Data dostupa: 19.09.2019. (In Russ.)
4. Hygienic requirements for the design, equipment and operation of swimming pools [Elektronnyi resurs]: sanitar normy, pravila i gigien normativy: postanovlenie M-va zdravookhraneniia Resp Belarus’, 22 sent 2009 g, № 105. Rezhim dostupa: Data dostupa: 24.09.2019. (In Russ.)
5. MU Assessment of sensitivity to disinfectants of microorganisms circulating in medical organizations [Elektronnyi resurs]. Rezhim dostupa: Data dostupa: 19.09.2019. (In Russ.)
6. Filonov VP, Zastenskaya IA, Mel'nikova LA, Dudchik NV, Treshkova TS, Treylib VV, i dr. Methods of sanitary-microbiological control of swimming pool water: instruktsiia po primeneniiu: utv MZ RB 19 marta 2010 g, № 070-0210. Minsk, RB; 2010. 25 р. (In Russ.)
7. Cargill JS, Scott KS, Gascoyne-Binzi D, Sandoe JA. Granulicatella infection: diagnosis and management. J Med Microbiol. 2012 Jun;61(Pt 6):755-61. doi:
8. Purty S, Saranathan R, Prashanth K, Narayanan K, Asir J, Devi CS, et al. The expanding spectrum of human infections caused by Kocuria species: a case report and literature review. Emerg Microbes Infect. 2013 Oct;2(10):e71. doi:
9. Peters MCFM; Delft University of Technology. Microbiology in swimming pools: UV-based treatment versus chlorination: doctoral thesis. [SL]; 2016. 165 p. doi:
10. Ajadi FA, Thonda OA. Microbial Assessment of Swimming Pools from Selected Hotels in Osogbo Metropolis, Osun State, Nigeria. J Advances Microbiol. 2017 Dec;7(3). doi:
11. Rasti S, Assadi MA, Iranshahi L, Saffari M, Gilasi HR, Pourbabaee M. Assessment of Microbial Contamination and Physicochemical Condition of Public Swimming Pools in Kashan, Iran. Jundishapur J Microbiol. 2012:5(3):450-5. doi:
12. Bayram N, Devrim I, Apa H, Gülfidan G, Türkyılmaz HN, Günay I. Sphingomonas paucimobilis infections in children: 24 case reports. Mediterr J Hematol Infect Dis. 2013 Jun;5(1):e2013040. doi:

Information about authors:
Pugach V.V.– research officer of the Laboratory for Clinical and Experimental Microbiology, Republican Research and Practical Center for Epidemiology & Microbiology,

Correspondence address: Republic of Belarus, 220114, Minsk, 23 Filimonova str., Republican Research and Practical Center for Epidemiology and Microbiology, Laboratory for Clinical and Experimental Microbiology E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Valentin V. Pugach.

Поиск по сайту