Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2020.2.7

Liasnikau K.A., Shliakhtunou Y.A.
Clinical significance of molecular-genetic markers in the diagnosis and personalization of lung cancer therapy
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus

Vestnik VGMU. 2020;19(2):7-18.

Abstract.
The article presents a review of the modern literature concerning the molecular-genetic diagnosis of lung cancer. The characteristics of mutations in the family oncogenes, such as epidermal growth factor receptor EGFR, survivin (BIRC5), KRAS (EML4-ALK), Herceptin 2 (HER2), P53, v-raf murine sarcoma (BRAF), etc. are presented. Their clinical significance, prognostic and predictive value in lung cancer have been established. With the help of modern diagnostic methods, it is possible to determine the expression of the indicated genes both directly in the tumor tissue obtained by biopsy and in circulating tumor cells of the peripheral blood. The molecular approach to the diagnosis of lung cancer by analyzing biomarkers obtained with the help of a non-invasive way is promising and relevant in order to individualize the treatment (surgical, neo- and adjuvant drug) tactics for patients suffering from lung cancer.
Key words: cancer, mutation, tumor marker, genetic diagnosis.

References

1. Matusevich VA. Predictive value of molecular biological markers in NSCLC stage 1-2. Onkol Zhurn. 2014;8(3):46-53. (In Russ.)
2. Tran Y, Benbatoul K, Gorse K, Rempel S, Futreal A, Green M, et al. Novel regions of allelic deletion on chromosome 18p in tumors of the lung, brain and breast. Oncogene. 1998 Dec;17(26):3499-505. doi: http://dx.doi.org/10.1038/sj.onc.1202258
3. Diaz LA, Bardelli A. Liquid biopsies: genotpyping circulating tumor DNA. J Clin Oncol. 2014 Feb;32(6):579-86. doi: http://dx.doi.org/10.1200/JCO.2012.45.2011
4. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017 Apr;545(7655):446-451. doi: http://dx.doi.org/10.1038/nature22364
5. Snegovoy AV, Manzyuk LV. The importance of biomarkers for determining treatment tactics and prognosis of malignant tumors. Prakt Onkologiia. 2011;12(4):166-70. (In Russ.)
6. Jakopovic M, Thomas A, Balasubramaniam S, Schrump D, Giaccone G, Bates SE. Targeting the epigenome in lung cancer: expanding approaches to epigenetic therapy. Front Oncol. 2013 Oct;3:261. doi: http://dx.doi.org/10.3389/fonc.2013.00261
7. Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer. 2010 Nov;10(11):760-74. doi: http://dx.doi.org/10.1038/nrc2947
8. Kawaguchi T, Koh Y, Ando M, Ito N, Takeo S, Adachi H, et al. Prospective Analysis of Oncogenic Driver Mutations and Environmental Factors: Japan Molecular Epidemiology for Lung Cancer Study. J Clin Oncol. 2016 Jul;34(19):2247-57. doi: http://dx.doi.org/10.1200/JCO.2015.64.2322
9. Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 2014 Feb;9(2):154-62. doi: http://dx.doi.org/10.1097/JTO.0000000000000033
10. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004 May;350(21):2129-39. doi: http://dx.doi.org/10.1056/NEJMoa040938
11. Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ, et al. Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol. 2018 Jun;36(16):1631-1641. doi: http://dx.doi.org/10.1200/JCO.2017.76.8671
12. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med. 2018 Jan;378(2):113-125. doi: http://dx.doi.org/10.1056/NEJMoa1713137
13. Wu YL, Sequist LV, Hu CP, Feng J, Lu S, Huang Y, et al. EGFR mutation detection in circulating cell-free DNA of lung adenocarcinoma patients: analysis of LUX-Lung 3 and 6. Br J Cancer. 2017 Jan;116(2):175-185. doi: http://dx.doi.org/10.1038/bjc.2016.420
14. Bacus S. KRAS mutation and amplification status predicts sensitivity to antifolate therapies in non-small cell lung cancer. Mol Cancer Ther. 2011 Nov;10(2 suppl). doi: http://dx.doi.org/10.1158/1535-7163.TARG-11-PR-2
15. Kosaka T, Yatabe Y, Onozato R, Kuwano H, Mitsudomi T. Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma. J Thorac Oncol. 2009 Jan;4(1):22-9. doi: http://dx.doi.org/10.1097/JTO.0b013e3181914111
16. Rom WN, Hay JG, Lee TC, Jiang Y, Tchou-Wong KM. Molecular and genetic aspects of lung cancer. Am J Respir Crit Care Med. 2000 Apr;161(4 Pt 1):1355-67. doi: http://dx.doi.org/10.1164/ajrccm.161.4.9908012
17. Halvorsen AR, Silwal-Pandit L, Meza-Zepeda LA, Vodak D, Vu P, Sagerup C, et al. TP53 Mutation Spectrum in Smokers and Never Smoking Lung Cancer Patients. Front Genet. 2016 May;7:85. doi: http://dx.doi.org/10.3389/fgene.2016.00085
18. Cherneva RV, Georgiev OB, Petrov DB, Dimova II, Toncheva D. Expression levels of p53 messenger RNA detected by real time PCR in tumor tissue, lymph nodes and peripheral blood of patients with non-small cell lung cancer-new perspectives for clinicopathological application. Biotechnol Biotechnol Equip. 2009;23(2):1247-9.
19. Salvesen GS, Duckett CS. IAP proteins: Blocking the road to death's door. Nat Rev Mol Cell Biol. 2002 Jun;3(6):401-10. doi: http://dx.doi.org/10.1038/nrm830
20. Xie YL, An L, Jiang H, Wang J. Nuclear survivin expression is associated with a poor prognosis in Caucasian non-small cell lung cancer patients. Clin Chim Acta. 2012 Dec;414:41-3. doi: http://dx.doi.org/10.1016/j.cca.2012.08.012
21. Hirano H, Maeda H, Yamaguchi T, Yokota S, Mori M, Sakoda S. Survivin expression in lung cancer: Association with smoking, histological types and pathological stages. Oncol Lett. 2015 Sep;10(3):1456-1462. doi: http://dx.doi.org/10.3892/ol.2015.3374
22. Gachechiladze M, Skarda J. The role of BRCA1 in non-small cell lung cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2012 Sep;156(3):200-3. doi: http://dx.doi.org/10.5507/bp.2012.049
23. Giovannetti E, Zucali PA, Peters GJ, Cortesi F, D'Incecco A, Smit EF, et al. Association of polymorphisms in AKT1 and EGFR with clinical outcome and toxicity in non-small cell lung cancer patients treated with gefitinib. Mol Cancer Ther. 2010 Mar;9(3):581-93. doi: http://dx.doi.org/10.1158/1535-7163.MCT-09-0665
24. Tsao AS, McDonnell T, Lam S, Putnam JB, Bekele N, Hong WK, et al. Increased phospho-AKT (Ser(473)) expression in bronchial dysplasia: implications for lung cancer prevention studies. Cancer Epidemiol Biomarkers Prev. 2003 Jul;12(7):660-4.
25. Suzuki M, Shiraishi K, Yoshida A, Shimada Y, Suzuki K, Asamura H, et al. HER2 gene mutations in non-small cell lung carcinomas: concurrence with Her2 gene amplification and Her2 protein expression and phosphorylation. Lung Cancer. 2015 Jan;87(1):14-22. doi: http://dx.doi.org/10.1016/j.lungcan.2014.10.014
26. Li S, Li L, Zhu Y, Huang C, Qin Y, Liu H, et al. Coexistence of EGFR with KRAS, or BRAFor PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts. Br J Cancer. 2014 May;110(11):2812-20. doi: http://dx.doi.org/10.1038/bjc.2014.210
27. Kinno T, Tsuta K, Shiraishi K, Mizukami T, Suzuki M, Yoshida A, et al. Clinicopathological features of non-small cell lung carcinomas with BRAF mutations. Ann Oncol. 2014 Jan;25(1):138-42. doi: http://dx.doi.org/10.1093/annonc/mdt495
28. Webb TR, Slavish J, George RE, Look AT, Xue L, Jiang Q, et al. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther. 2009 Mar;9(3):331-56. doi: http://dx.doi.org/10.1586/14737140.9.3.331
29. Le Beau MM, Bitter MA, Larson RA, Doane LA, Ellis ED, Franklin WA, et al. The t(2;5) (p23;q35): a recurring chromosomal abnormality in Ki-1-positive anaplastic large cell lymphoma. Leukemia. 1989 Dec;3(12):866-70.
30. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007 Aug;448(7153):561-6. doi: http://dx.doi.org/10.1038/nature05945
31. Fan L, Feng Y, Wan H, Shi G, Niu W. Clinicopathological and Demographical Characteristics of Non-Small Cell Lung Cancer Patients with ALK Rearrangements: A Systematic Review and Meta-Analysis. PLoS One. 2014 Jun;9(6):e100866. doi: http://dx.doi.org/10.1371/journal.pone.0100866
32. Gainor JF, Shaw AT. Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist. 2013;18(7):865-75. doi: http://dx.doi.org/10.1634/theoncologist.2013-0095
33. Camidge DR, Bang YJ, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 2012 Oct;13(10):1011-9. doi: http://dx.doi.org/10.1016/S1470-2045(12)70344-3
34. Mazurenko NN, Kushlinskiy NE. Molecular genetic markers of non-small cell lung cancer. Molekuliar Meditsina. 2014;(4):4-13. (In Russ.)
35. Kononenko IB, Snegovoy AV, Sel'chuk VYu. Cyclin-dependent kinase inhibitors: efficacy and safety. Med Sovet. 2019;(10):42-55. (In Russ.)
36. Wu A, Wu B, Guo J, Luo W, Wu D, Yang H, et al. Elevated expression of CDK4 in lung cancer. J Transl Med. 2011 Apr;9:38. doi: http://dx.doi.org/10.1186/1479-5876-9-38
37. Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat Rev. 2016 Apr;45:129-38. doi: http://dx.doi.org/10.1016/j.ctrv.2016.03.002
38. Mirzadeh Azad F, Naeli P, Malakootian M, Baradaran A, Tavallaei M, Ghanei M, et al. Two lung development-related microRNAs, miR-134 and miR187, are differentially expressed in lung tumors. Gene. 2016 Feb;577(2):221-6. doi: http://dx.doi.org/10.1016/j.gene.2015.11.040
39. Ahmad A, Ginnebaugh KR, Li Y, Bao B, Gadgeel SM, Sarkar FH. miRNA Targeted Therapy in Lung Cancer. In: Sarkar F, eds. MicroRNA Targeted Cancer Therapy. Switzerland: Springer; 2014.
40. Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015 Apr;15:38. doi: http://dx.doi.org/10.1186/s12935-015-0185-1
41. Zhang L, Yu S. Role of miR-520b in non-small cell lung cancer. Exp Ther Med. 2018 Nov;16(5):3987-3995. doi: http://dx.doi.org/10.3892/etm.2018.6732
42. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005 Nov;65(21):9628-32. doi: http://dx.doi.org/10.1158/0008-5472.CAN-05-2352
43. Xi S, Xu H, Shan J, Tao Y, Hong JA, Inchauste S, et al. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Invest. 2013 Mar;123(3):1241-61. doi: http://dx.doi.org/10.1172/JCI61271
44. Shikeeva AA, Kekeeva TV, Zavalishina LE, Andreeva YuYu, Frank GA. Molecular genetic changes in non-small cell lung cancer. Onkologiia. 2013;(5):56-61. (In Russ.)
45. Georgiadis P, Hebels DG, Valavanis I,Liampa I, Bergdahl IA, Johansson A, et al. Omics for Prediction of Environmental Health Effects: Blood Leukocyte-based Cross-omic Profiling Reliably Predicts Diseases Associated with Tobacco Smoking. Sci Rep. 2016 Feb;6:20544. doi: http://dx.doi.org/10.1038/srep20544
46. Lu Y, Li S, Zhu S, Gong Y, Shi J, Xu L. Methylated DNA/RNA in Body Fluids as Biomarkers for Lung Cancer. Biol Proced Online. 2017 Mar;19:2. doi: http://dx.doi.org/10.1186/s12575-017-0051-8
47. Balgkouranidou I, Chimonidou M, Milaki G, Tsarouxa EG, Kakolyris S, Welch DR, et al. Breast Cancer Metastasis Suppressor-1 Promoter Methylation in Cell-free DNA Provides Prognostic Information in Nonsmall Cell Lung Cancer. Br J Cancer. 2014 Apr;110(8):2054-62. doi: http://dx.doi.org/10.1038/bjc.2014.104

Information about authors:
Liasnikau K.A. – postgraduate of the Chair of Oncology with the courses of Radiodiagnosis & Radiotherapy and the course of the Faculty for Advanced Training & Retraining, Vitebsk State Order of Peoples’ Friendship Medical University,
ORCID: https://orcid.org/0000-0001-5649-4044;
Shliakhtunou Y.A. – Candidate of Medical Sciences, associate professor of the Chair of Oncology with the courses of Radiodiagnosis & Radiotherapy and the course of the Faculty for Advanced Training & Retraining, Vitebsk State Order of Peoples’ Friendship Medical University;
ORCID: https://orcid.org/0000-0002-5906-5373.

Correspondence address: Republic of Belarus, 210009, Vitebsk, 27 Frunze ave, Vitebsk State Order of Peoples’ Friendship Medical University, Chair of Oncology with the courses of Radiodiagnosis & Radiotherapy and the course of the Faculty for Advanced Training & Retraining. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. –Kanstantsin A. Liasnikau.

 

Поиск по сайту