A+ A A-

Download article


Gusakova E.A., Gorodetskaya I.V.
The restriction of sympathoadrenal system activity and the body’s resistance to stress
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus

Vestnik VGMU. 2020;19(6):41-53.

Based on the analysis of monographs, results published in physiological and medical journals, as well as presented on Internet resources (search engines Google, Pubmed, eLIBRARY, selection of literature sources by key words – glucocorticoids, thyroid hormones), it has been found  out that the sympathectomy (chemical –  the introduction of drugs that inhibit the transmission of excitation in the synapses of the sympathetic nervous system, for example, guanethidine, 6-hydroxydopamine, reserpine, etc.; surgical – the  removal of the sympathetic ganglia; immune – the introduction of antibodies to the nerve growth factor) reduces the body’s resistance to stress, since it considerably  weakens the response of the hypothalamic-pituitary-adrenal and sympathoadrenal systems making it impossible to implement the adaptive effects of their hormones under these conditions. The following mechanisms of decreasing stress resistance during blockade of transmission of excitation in adrenergic synapses have been established: intensification of lipid peroxidation and proteolysis, impaired protein and carbohydrate metabolism, causing the appearance of dystrophic changes in various tissues; the  heart function disturbance , that ensures the activity of all systems making an  adaptation  to stress.
Key words: stress resistance, deficiency of sympathetic nerve effects.

The research was conducted within the frames of the theme task of State Research Programs (GPNI) of the Republic of Belarus for 2019-2020 «To study the possibility of increasing organism’s stress tolerance by stimulating the central part of antistress system and reducing the activity of stress- realizing system by means of purposeful correction of the thyroid status (experimental study)».


1. Higuchi S, Ota H, Ueda T, Tezuka Y, Omata K, Ono Y, et al. 3T MRI evaluation of regional catecholamine-producing tumor-induced myocardial injury. Endocr Connect. 2019 May;8(5):454-461. doi:
2. Pasatetckaia NA, Lopatina EV, Kipenko AV, Rubanova NS, Tcyrlin VA. Realization of the trophotropic effect of catecholamines in the culture of excitable and non-excitable tissues of evolutionarily different animals. Ros Fiziol Zhurn IM Sechenova. 2018;104(5):59009. (In Russ.)
3. Christ T, Rozmaritsa N, Engel A, Berk E, Knaut M, Metzner K, et al. Arrhythmias, elicited by catecholamines and serotonin, vanish in human chronic atrial fibrillation. Proc Natl Acad Sci U S A. 2014 Jul;111(30):11193-8. doi:
4. Nambiar VK, Chalappurath DR. Thrombotic tendencies in excess catecholamine states. In: Uçar A, ed. Biogenic Amines in Neurotransmission and Human Disease. London, United Kingdom; 2019. P. 65-73. doi:
5. Meshchaninov VN, Shcherbakov DL. The effect of neurotransmitters on lipid peroxidation under immobilization stress in rats of different ages. Kazan Med Zhurn. 2015;96(5):843-9. (In Russ.)
6. Feng Q, Lv Y, Song X, Qu H, Chen Y. The relationship between iron metabolism, stress hormones, and insulin resistance in gestational diabetes mellitus. Nutr Diabetes. 2020;10(1):17.
7. Bulatetckii CV, Bialovskii IuIu. The response of body systems to increased breathing resistance in groups with different levels of adaptive capabilities. Tsentr Nauch Vestn. 2016;1(4):7-11. (In Russ.)
8. Porta F, Bracht H, Weikert C, Beck M, Takala J, Brandt S, et al. Effects of endotoxin and catecholamines on hepatic mitochondrial respiration. Inflammation. 2009 Oct;32(5):315-21. doi:
9. Uzbekova NR, Khuzhamberdiev MA, On the relationship between the activity of the sympathetic-adrenal system and mediators of immune disorders in patients with metabolic syndrome. Ros Kardiol Zhurn. 2014;107(3):72-5. (In Russ.)
10. Borshchikova TI, Epifantceva NN, Kan SL, Filimonov SN. The role of catecholamines in the development of immunosuppression in severe traumatic brain injury. Meditsina Kuzbasse. 2019;18(1):5-10. (In Russ.)
11. Bozhko AP, Gorodetckaia IV. The importance of thyroid hormones in the prevention of impaired contractile function and antioxidant activity of the myocardium during heat stress. Ros Fiziol Zhurn IM Sechenova. 1998;84(3):226-32. (In Russ.)
12. Gorodetckaia IV. The importance of thyroid hormones in the anti-stress system of the body. Vestn Kyrgyz Gos Med Akad IK Akhunbaeva. 2009;(1):117-8. (In Russ.)
13. Gusakova EA, Gorodetckaia IV. Iodine-containing thyroid hormones increase the body's resistance to the stress of «time deficit». Aktual'nі Problemi Suchas Meditsini. 2019;(4):41-50. (In Russ.)
14. Akkuratov EG. Morphological changes in afferent neurons in the early stages after complete chemical sympathization. V: Guliaev GIu, red. Fundamental'nye osnovy innovatsionnogo razvitiia nauki i obrazovaniia. Penza, RF; 2018. Р. 208-15. (In Russ.)
15. Przywara DA, Bhave SV, Bhave A, Wakade TD, Wakade AR. Dissociation between intracellular Ca2+ and modulation of [3H] noradrenaline release in chick sympathetic neurons. J Physiol. 1991 Jun;437:201-20. doi:
16. Vardanyan RS, Hruby VJ. Synthesis of essential drugs. Amsterdam; Boston: Elsevier; 2006. 634 p.
17. Rodriguez-Pallares J, Parga JA, Muñoz A, Rey P, Guerra MJ, Labandeira-Garcia JL. Mechanism of 6-hydroxydopamine neurotoxicity: The role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem. 2007 Oct;103(1):145-56. doi:
18. Kucherianu VG, Bocharov EV, Kryzhanovskii GN, Bocharova OA, Poleshchuk VV. Mechanisms of neurodegeneration in Parkinson's disease.  Microglia activation. Patogenez. 2012;10(3):30-4. (In Russ.)
19. Mashkovskii MD. Medicines: posobie dlia vrachei. 16-e izd, pererab, ispr i dop. Moscow, RF: Novaia volna: Umerenkov; 2012. 1216 р. (In Russ.)
20. Kolibal-Pegher S, Edwards DJ, Meyers-Schoy SA, Vollmer RR. Adrenal medullary adaptations and cardiovascular regulation after 6-hydroxydopamine treatment in rats. J Auton Nerv Syst. 1994 Jul;48(2):113-20. doi:
21. Piñon M, Racotta IS, Ortiz-Butron R, Racotta R. Catecholamines in paraganglia associated with the hepatic branch of the vagus nerve: effects of 6-hydroxydopamine and reserpine. J Auton Nerv Syst. 1999 Feb 15;75(2-3):131-5. doi:
22. Coleoni AH. Effects of the administration of catecholamine-depleting drugs on the thyroid function of the rat. Pharmacology. 1972;8(4):300-10. doi:
23. Vavřínová A, Behuliak M, Bencze M, Vodička M, Ergang P, Vaněčková I, et al. Sympathectomy-induced blood pressure reduction in adult normotensive and hypertensive rats is counteracted by enhanced cardiovascular sensitivity to vasoconstrictors. Hypertens Res. 2019 Sep;42:1872-82.
24. Dwyer KW, Provenzano PP, Muir P, Valhmu WB, Vanderby R, et al. Blockade of the sympathetic nervous system degrades ligament in a rat MCL model. J Appl Physiol (1985). 2004 Feb;96(2):711-8. doi:
25. Zochodne DW, Huang Z, Ward KK, Low PA. Guanethidine-induced adrenergic sympathectomy augments endoneurial perfusion and lowers endoneurial microvascular resistance. Brain Res. 1990;519(1-2):112-7.
26. Abzalov RA, Nigmatullina PP, Abzalov PP. Amplitude-time characteristics of the differentiated rheogram in sympathization of rats. Biul Eksperim Biologii Meditsiny. 1998;125(1):116-20. (In Russ.)
27. Beliakova EI. Changes in the content of serotonin in various parts of the rat brain after a single and prolonged nociceptive action. Uspekhi Sovremen Estestvoznaniia. 2007;(7):99-100. (In Russ.)
28. Studenikina TM, Sluka BA, Bogdanova MI. Morphological changes in the adrenal glands of rats under conditions of chemical sympathectomy with guanethidine. Morfologiia. 2000;117(3):116. (In Russ.)
29. Bartolomé J, Bartolomé M, Seidler J, Anderson TR, Slotkin T. Effects of early postnatal guanethidine administration on adrenal medulla and brain of developing rats. Biochem Pharmacol. 1976 Nov;25(21):2387-90. doi:
30. Rodionov IM, Iarygin VN, Mukhammedov AA. Immunological and chemical sympathization. Moscow, RF: Nauka; 1988. 152 р.
31. Raff H, Lee JJ, Widmaier EP, Oaks MK, Engeland WC. Basal and adrenocorticotropin-stimulated corticosterone in the neonatal rat exposed to hypoxia from birth: modulation by chemical sympathectomy. Endocrinology. Endocrinology. 2004 Jan;145(1):79-86. doi:
32. Minami M, Togashi H, Kurosawa M, Shimamura K, Koike Y, Saito H, et al. Effect of guanethidine, clonidine and guanfacine on urinary catecholamine excretion in cold-stressed spontaneously hypertensive rats. Jpn J Pharmacol. 1982 Oct;32(5):941-4. doi:
33. Grabovoi AN. Morphological and histochemical changes in the nervous apparatus of the skin during wound healing after local exposure to norepinephrine and acetylcholine. Morfologiia. 1999;115(3):68-72. (In Russ.)
34. Smirnov SN, Manachenko IuIu, Kostritca VV. Interaction of sympathization and thyroxine in the regulation of the division of epithelial cells in the tongue of immature rats. Zagal'na Patologіia Patol. Fіzіologіia. 2009;4(2):53-7. (In Russ.)
35. Kaliunov VN, Petrusenko GP, Fomichenko KV. The effect of nerve growth factor, guanethidine and their combined use on the activity of nucleases in animal tissues. Vopr Med Khimii. 1989;35(3):117-20. (In Russ.)
36. Chernysheva MP, Kovalenko RI. Guidelines for functional hemispheric asymmetry. Moscow, RF: Nauch mir; 2009. 836 р. (In Russ.)
37. Pellegrini C, Fornai M, Colucci R, Tirotta E, Blandini F, Levandis G, et al. Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. Neuroinflammation. 2016;13(1):146. doi:
38. Yu Y-P, Ju W-P, Li Z-G, Wang D-Z, Wang Y-C, Xie A-M. Acupuncture inhibits oxidative stress and rotational behavior in 6-hydroxydopamine lesioned rat. Brain Res. 2010 Jun;1336:58-65. doi:
39. Zhu T-G, Wang X-X, Luo W-F, Zhang Q-L, Huang T-T, Xu X-S, et al. Protective effects of urate against 6-OHDA-induced cell injury in PC12 cells through antioxidant action. Neurosci Lett. 2012 Jan;506(2):175-9. doi:
40. Kurianova EV, Savin VF, Teplyi DL. Sex and age characteristics of heart rate variability and lipid peroxidation in rats with sympathization and administration of a-tocopherol. Izv Vyssh Ucheb Zavedenii Severo-Kavkaz Region Estestv Nauki. 2009;(3):87-91. (In Russ.)
41. Pišlar A, Tratnjek L, Glavan G, Živin M, Kos J. Upregulation of cysteine protease cathepsin X in the 6-hydroxydopamine model of Parkinson’s Disease. Front Mol Neurosci. 2018 Nov;11:412. doi:
42. Lee DC, Womble TA, Mason CW, Jackson IM, Lamango NS, Severs WB, et al. 6-Hydroxydopamine Induces Cystatin C-mediated Cysteine Protease Suppression and Cathepsin D Activation. Neurochem Int. 2007 Mar;50(4):607-18. doi:
43. Kovrigina TR. Development of skeletal muscle neuromuscular synapse after chemical sympathization. Morfologiia. 2004;(3):28-32. (In Russ.)
44. Pagani F, Sibilia V, Cavani F, Ferretti M, Bertoni L, Palumbo C, et al. Sympathectomy alters bone architecture in adult growing rats. J Cell Biochem. 2008;104(6):2155-64. doi:
45. Kvist-Reimer M, Sundler F, Bo A. Effects of chemical sympathectomy by means of 6-hydroxydopamine on insulin secretion and islet morphology in alloxan-diabetic mice. Cell Tissue Res. 2002;307(2):203-9. doi:
46. Imani A, Parsa H, Chookalaei LG, Rakhshan K, Golnazari M, Faghihi M. Acute physical stress preconditions the heart against ischemia/reperfusion injury through activation of sympathetic nervous system. Arq Bras Cardiol. 2019 Oct;113(3):401-408. doi:
47. Kurianova EV, Teplyi DL. Morphological characteristics of the heart and the intensity of lipid peroxidation in the myocardium of sympathetic rats: modulating effects of β-tocopherol, physical training and their combination. Vestn Orenburg Gos Un-ta. 2006;(10-2):384-9. (In Russ.)
48. Kur'yanova EV, Savin VF, Teplyy DL. Stress-induced changes in heart chronotropic function and lipid peroxidation parameters in the myocardium of rats with a deficiency of sympathetic nervous influences: modulating effects of a-tocopherol and physical training. Vest Astrakhan Gos Tekhn Un-ta. 2006;(4):266-71. (In Russ.)
49. Nigmatullina RR, Khuramshin IG, Nasyrova AG. Influence of sympathization on the pumping function of the heart in the postnatal ontogenesis of rats. Ros Fiziol Zhurn IM Sechenova. 2002;88(12):1567-77. (In Russ.)
50. Kirillova VV, Nigmatullina RR. Pharmacological sympathization changes the response of the inotropic function of the heart to serotonin in the postnatal ontogenesis of rats. Ros Fiziol Zhurn IM Sechenova. 2007;93(10):1132-42. (In Russ.)
51. Rodionov IM, Golubinskaya VO, Borovik OS, Tarasova AS. The role of parasympathetic cardiotropic effects in the stabilization of the blood pressure level in normal rats and after sympathization. Vestn Mosk Un-ta. 1999;(3):13-7. (In Russ.)

Information about authors:
Gusakova E.A. – Candidate of Biological Sciences, associate professor of the Chair of General, Physical and Colloid Chemistry, Vitebsk State Order of Peoples’ Friendship Medical University,
Gorodetskaya I.V. – Doctor of Medical Sciences, professor of the Chair of Normal Physiology, Vitebsk State Order of Peoples’ Friendship Medical University,

Correspondence address: Republic of Belarus, 210009, Vitebsk, 27 Frunze ave., Vitebsk State Order of Peoples’ Friendship Medical University, Chair of General, Physical and Colloid Chemistry. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Elena A. Gusakova.

Поиск по сайту