A+ A A-

Download article


Pashinskaya E.S., Semenov V.M.
Toxoplasma gondii as a factor of progression of carcinogenic processes at the molecular-genetic level in an intermediate host
Vitebsk State Order of Peoples’ Friendship Medical University, Vitebsk, Republic of Belarus

Vestnik VGMU. 2021;20(4):46-52.

Objectives. To study Toxoplasma gondii as a factor of carcinogenic processes progression at the molecular-genetic level in an intermediate host.
Material and methods. In the experiment, the expression of the proto-oncogenes survivin (BIRC5), epidermal growth factor (ErbB-2/HER2-Neu), GLI, vascular endothelial growth factor (VEGF) and anti-oncogene TP53 was determined in comparison with the reference genes – β-actin (ACTB) and GAPDH by means of PCR analysis in the tissues of animals with C6 tumor in situ infected with toxoplasma in different doses.
A statistical comparison was made between the data of the experimental groups, depending on the dose of infection and the stage of the parasite development.
Results. It has been revealed that toxoplasma can cause an increase in the expression of survivin (BIRC5), VEGF, ErbB-2/HER2-Neu, GLI in the tumors, lungs, liver, spleen, brain, both when invaded at a dose of 25 toxoplasma tachyzoites per 1 g of body weight (5000 tachyzoites per female) and when infected at a dose of 50 toxoplasma tachyzoites per 1 g of body weight (10000 tachyzoites per female). The degree of an increased expression of proto-oncogenes is directly dependent on the dose and stage of the parasite development.
Infection of female rats having glioma with toxoplasma tachyzoites leads to a decrease in the expression of the anti-oncogene TP53 in the tissues of glioma, the lungs, liver, spleen, and brain of female rats. The decrease in the expression of TP53 depends on the dose of infection and the stage of toxoplasma development.
Conclusions. Experimental toxoplasmosis causes an increase in the expression of BIRC5, ErbB-2/HER2-Neu, GLI, VEGF and a decrease in the expression of the anti-oncogene TP53, which can lead to the development of aggressive blastomogenic processes in mammalian tissues.
Key words: glioma, toxoplasma, BIRC5, ErbB-2/HER2-Neu, GLI, VEGF, TP53, rat.


1. Cosgarea I, Ugurel S, Sucker A, Livingstone E, Zimmer L, Ziemer M, et al. Targeted next generation sequencing of mucosal melanomas identifies frequent NF1 and RAS mutations. Oncotarget. 2017 Jun;8(25):40683-40692. doi:
2. McGuire S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr. 2016 Mar;7(2):418-9. doi:
3. Redig A, Capelletti M, Dahlberg SE, Sholl LM, Mach S, Fontes C, Shi Y, et al. Clinical and molecular characteristics of NF1-mutant lung cancer. Clin Cancer Res. 2016 Jul;22(13):3148-56. doi:
4. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90. doi:
5. Hammerman PS, Lawrence MS, Voet D, Jing R, Cibulskis K, Sivachenko A, et al. Comprehensive genomic characterization of squamous cell lung cancers. Cancer Genome Atlas Research Network. Nature. 2012 Sep;489(7417):519-25. doi:
6. Dhanasekaran SM, Balbin OA, Chen G, Nadal E, Kalyana-Sundaram S, Pan J, et al. Transcriptome meta-analysis of lung cancer reveals recurrent aberrations in NRG1 and Hippo pathway genes. Nat Commun. 2014 Dec;5:5893. doi:
7. Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in Nsmall-cell lung cancer. Nat Genet. 2012 Oct;44(10):1111-6. doi:
8. Partelli S, Maurizi A, Tamburrino D, Crippa S, Pandolfi S, Falconi M. Surgical management of pancreatic neuroendocrine neoplasms. Ann Saudi Med. 2014 Jan-Feb;34(1):1-5. doi:
9. D'Haese JG, Tosolini C, Ceyhan GO, Kong B, Esposito I, Michalski CW, et al. Update on surgical treatment of pancreatic neuroendocrine neoplasms. World J Gastroenterol. 2014 Oct;20(38):13893-8. doi:
10. Radu EC, Saizu AI, Grigorescu RR, Croitoru AE, Gheorghe C. Metastatic neuroendocrine pancreatic tumor  case report Radu EC. J Med Life. 2018 Jan-Mar;11(1):57-61.
11. Halfdanarson TR, Rabe KG, Rubin J, Petersen GM. Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival. Ann Oncol. 2008 Oct;19(10):1727-33. doi:
12. Watzka FM, Fottner C, Miederer M, Schad A, Weber MM, Otto G, et al. Surgical therapy of neuroendocrine neoplasm with hepatic metastasis: patient selection and prognosis. Langenbecks Arch Surg. 2015 Apr;400(3):349-58. doi:
13. Shatveryan GA, Karagyozyan GA, Chardarov NK, Bagmet NN, Ratnikova NP. Surgical management of non-functioning pancreatic neuroendocrine tumors. Khirurgiia (Mosk). 2018;(1):4-9. doi:
14. Ricci C, Casadei R, Taffurelli G, Campana D, Ambrosini V, Pagano N, et al. Validation of the 2010 WHO classification and a new prognostic proposal: a single centre retrospective study of well-differentiated pancreatic neuroendocrine tumours. Pancreatology. 2016 May-Jun;16(3):403-10. doi:
15. Scarpa A, Mantovani W, Capelli P, Beghelli S, Boninsegna L, Bettini R, et al. Pancreatic endocrine tumors: improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Mod Pathol. 2010 Jun;23(6):824-33. doi:
16. Shen C, Yin Y, Chen H, Tang S, Yin X, Zhou Z, et al. Neuroendocrine tumors of colon and rectum: Validation of clinical and prognostic values of the World Health Organization 2010 grading classifications and European Neuroendocrine Tumor Society staging systems. Oncotarget. 2017 Mar;8(13):22123-22134. doi:
17. Pashinskaia ES, Semenov VM. Effect of Toxoplasma gondii on GFAP, S 100 expression and proliferative activity index in experimental rat glioma tissues. Vestn VGMU. 2019;18(6):50-8. (In Russ.)
18. Semenov VM, Pashinskaia ES, Pobiarzhin VV, Subbotina IA, Shliakhtunov EA. Gene mechanisms of cancer tumors. Zdravookhranenie HELTHCARE. 2017;(7):38-47. (In Russ.)
19. Pashinskaia ES, Pobiarzhin VV, Semenov VM. Parasitization of toxoplasms and certain biomedical aspects (literature review, Part 1). Med-Biol Problemy Zhiznedeiatel'nosti. 2018;(1):14-24. (In Russ.)
20. Pashinskaia ES, Pobiarzhin VV. Method of reproduction of experimental rat glioma S6 in situ. Med-Biol Problemy Zhiznedeiatel'nosti. 2019;(2):50-5. (In Russ.)
21. Li F, Aljahdali I, Ling X. Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study? J Exp Clin Cancer Res. 2019 Aug;38(1):368. doi:
22. Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, et al. Vascular endothelial growth factor (VEGF) – key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455-467.
23. De Giovanni C, Landuzzi L, Palladini A, Ianzano ML, Nicoletti G, Ruzzi F, et al. Cancer vaccines co-targeting HER2/Neu and IGF1R. Cancers (Basel). 2019 Apr;11(4):517. doi:
24. Niewiadomski P, Niedziółka SM, Markiewicz Ł, Uśpieński T, Baran B, Chojnowska K. Gli proteins: regulation in development and cancer. Cells. 2019 Feb;8(2):147. doi:
25. Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M, et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 2019 Jul;28(5):1370-1384.e5. doi:

Information about authors:
Pashinskaya Е.S. – Candidate of Biological Sciences, associate professor of the Chair of Biology & Pharmaceutical Botany, Vitebsk State Order of Peoples’ Friendship Medical University;
Semenov V.M. – Doctor of Medical Sciences, professor, head of the Chair of Infectious Diseases with the course of the Faculty for Advanced Training & Retraining, Vitebsk State Order of Peoples’ Friendship Medical University.

Correspondence address: Republic of Belarus, 210009, Vitebsk, 27 Frunze ave., Vitebsk State Order of Peoples’ Friendship Medical University, Chair of Biology & Pharmaceutical Botany. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Еkaterina S. Pashinskaya.

Поиск по сайту