A+ A A-

Download article


Ishutsina O.V.
The surfactant system of the lungs. A review article
Belarusian State Medical University, Minsk, Republic of Belarus

Vestnik VGMU. 2021;20(4):7-17.

This article contains the information about the structure, functioning, and regeneration of type 2 pneumocytes. The composition of the surfactant, the processes of its synthesis, formation, secretion, distribution and redistribution of its components, as well as the biological role of the surfactant in the functioning of the lungs are described in detail. The information about the development of the surfactant system of the lungs during embryogenesis is also included.
Objectives. To review modern literature on the structure and functions of the surfactant system of the lungs, the organization and structure of the surfactant, the mechanism of surfactant formation, the embryogenesis of the respiratory section, to characterize the structure and processes of the functioning of type 2 pneumocytes, as well as the processes of synthesis and secretion of the surfactant, its biological role in the functioning of the lungs.
The relevance of the chosen topic is connected with a high level of the respiratory system pathology including a high incidence of respiratory system organs diseases in early childhood, associated with an insufficient level of the surfactant maturity. The problem of pulmonary pathology in newborns, including premature babies, largely determines the level of infant morbidity and mortality.
Key words: type 2 pneumocytes, surfactant, surfactant secretion, surfactant homeostasis, embryogenesis of the surfactant system of the lungs.


1. Anaev EKh, Chuchalin AG. Exhaled air condensate study in pulmonology: obzor lit. Pul’monologiia. 2002;(2):57-66. (In Russ.)
2. Erokhin VV, Lepekha LN, Erokhina MV, Lovacheva OV. Surfactant system for pulmonary tuberculosis. Moscow, RF: FGBU TsNIIT RAMN; 2013. 265 р. (In Russ.)
3. Goerke J. Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta. 1998 Nov;1408(2-3):79-89. doi:
4. Perez-Gil J, Weaver TE. Pulmonary surfactant pathophysiology: current models and open questions. Physiology (Bethesda). 2010 Jun;25(3):132-41. doi:
5. Malacrida L, Astrada S, Briva A, Bollati-Fogolín M, Gratton E, Bagatolli LA. Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures. Biochim Biophys Acta. 2016 Nov;1858(11):2625-2635. doi:
6. Cerrada A, Haller T, Cruz A, Pérez-Gil J. Pneumocytes assemble lung surfactant as highly packed/dehydrated states with optimal surface activity. Biophys J. 2015 Dec;109(11):2295-306. doi:
7. Lopez-Rodriguez E, Perez-Gil J. Structure-function rela-tionships in pulmonary surfactant membranes: from biophysics to therapy. Biochim Biophys Acta. 2014 Jun;1838(6):1568-85. doi:
8. Sluka Sluka BA, Taganovich AD. Substantiation of the phenomenon of surfactant overproduction in the lungs during the development of bleomycin-induced pulmonary fibrosis. V: Surfaktantnaia i antisurfaktantnaia sistema legkikh: tez dokl 3-i nauch-prakt konf, Ialta, 12-15 noiab 1991 g. Ialta, RF; 1991. Р. 103-4. (In Russ.)
9. Hobi N, Siber G, Bouzas V, Ravasio A, Pérez-Gil J, Haller T. Physiological variablesaffecting surface film formation by native lamellar body-like pulmo-nary surfactant particles. Biochim Biophys Acta. 2014 Jul;1838(7):1842-50. doi:
10. Ghati A, Dam P, Tasdemir D, Kati A, Sellami H, Can Sezgin G, et al. Exogenous pulmonary surfactant: A review focused on adjunctive therapy for severe acute respiratory syndrome coronavirus 2 including SP-A and SP-D as added clinical marker. Curr Opin Colloid Interface Sci. 2021 Feb;51:101413. doi:
11. Roldan N, Goormaghtigh E, Pérez-Gila J, Garcia-Alvarez B. Palmitoylation as a key factor to modulate SP-C-lipid interactions inlung surfactant membrane multilayers. Biochim Biophys Acta Biomembranes. 2015 Jan;1848(1 Рt A):184-91. doi:
12. Beers MF, Mulugeta S. Surfactant protein C biosynthesis and its emerging role in conformational lung disease. Annu Rev Physiol. 2005;67:663-96. doi:
13. Gericke A, Flach CR, Mendelsohn R. Structure and orientation of lung surfactant SP-C and L-alpha-dipalmitoylphosphatidylcholine in aqueous monolayers. Biophys J. 1997 Jul;73(1):492-9. doi:
14. Parra E, Moleiro LH, López-Montero I, Cruz A, Monroy F, Pérez-Gil J. A combined action of pulmonary surfactant proteins SP-B and SP-C modulates permeability and dynamics of phospholipid membranes. Biochem J. 2011 Sep;438(3):555-64. doi:
15. Rodríguez-Capote K, Manzanares D, Haines T, Possmayer F. Reactive oxygen species inactivation of surfactant involves structural and functional alterations to surfactant proteins SP-B and SP-C. Biophys J. 2006 Apr;90(8):2808-21. doi:
16. Walther FJ, Waring AJ, Sherman MA, Zasadzinski JA, Gordon LM. Hydrophobic surfactant proteins and their analogues. Neonatology. 2007;91(4):303-10. doi:
17. Shulenin S, Nogee LM, Annilo T, Wert SE, Whitsett JA, Dean M. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N Engl J Med. 2004 Mar;350(13):1296-303. doi:
18. Sweet DG, Turner MA, Straňák Z, Plavka R, Clarke P, Stenson BJ, et al. A first-in-human clinical study of a new SP-B and SP-C enriched synthetic surfactant (CHF5633) in preterm babies with respiratory distress syndrome. Arch Dis Child Fetal Neonatal Ed. 2017 Nov;102(6):F497-F503. doi:
19. Caffrey M, Cherezov V. Crystallizing membrane proteins using lipidic mesophases. Nat Protoc. 2009;4(5):706-31. doi:
20. Olmeda B, Martinez-Calle M, Perez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: biogenesis, extracellular conversions, recycling. Ann Anat. 2017 Jan;209:78-92. doi:
21. Cerrada A, Haller T, Cruz A, Pérez-Gil J. Pneumocytes Assemble Lung Surfactant as Highly Packed/DehydratedStates with Optimal Surface Activity. Biophys J. 2015 Dec;109(11):2295-306. doi:
22. Vanhecke D, Herrmann G, Graber W, Hillmann-Marti T, Mühlfeld C, Studer D, et al. Lamellar body ultrastructure revisited: high-pressure freezing and cryoelectron microscopy of vitreous sections. Histochem Cell Biol. 2010 Oct;134(4):319-26. doi:
23. Morgan AJ, Davis LC, Galione A. Imaging approaches to measuring lysosomal calcium. Methods Cell Biol. 2015;126:159-95. doi:
24. Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA. Regulation of surfactant secretion in alveolar type II cells. Am J Physiol Lung Cell Mol Physiol. 2007 Aug;293(2):L259-71. doi:
25. Bouzas V, Haller T, Hobi N, Felder E, Pastoriza-Santos I, Pérez-Gil J. Nontoxic impact of PEG-coated gold nanospheres on functional pulmonary surfactant-secreting alveolar type II cells. Nanotoxicology. 2014 Dec;8(8):813-23. doi:
26. Mahavadi P, Henneke I, Ruppert C, Knudsen L, Venkatesan S, Liebisch G, et al. Altered surfactant homeostasis and alveolar epithelial cell stress in amiodarone-induced lung fibrosis. Toxicol Sci. 2014 Nov;142(1):285-97. doi:
27. Demianenko NG, Lepekha LN, Shmelev EI, Averbakh MM, Statcuk TA, Sivokozov IV. Macrophage and cytokine spectra of bronchoalveolar lavage in newly diagnosed and recurrent sarcoidosis of the respiratory system. Tuberkulez Bolezni Legkikh. 2016;94(9):59-64. (In Russ.)
28. Das SC, Stewart PJ. The influence of lung surfactant liquid crystalline nanostructures on respiratory drug delivery. Int J Pharm. 2016 Dec;514(2):465-474. doi:
29. Leslie KO. Idiopathic pulmonary fibrosis may be a disease of recurrent, tractional injury to the periphery of the aging lung: a unifying hypothesis regarding etiology and pathogenesis. Arch Pathol Lab Med. 2012 Jun;136(6):591-600. doi:
30. Lopez-Rodriguez E, Perez-Gil J. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. Biochim Biophys Acta. 2014 Jun;1838(6):1568-85. doi:
31. Pizzirusso A, De Nicola A, Milano G. MARTINI coarse-grained model of Triton TX-100 in pure DPPC monolayer and bilayer interfaces. J Phys Chem B. 2016 Apr;120(16):3821-32. doi:
32. Schwaiblmair M, Berghaus T, Haeckel T, Wagner T, von Scheidt W. Amiodarone-induced pulmonary toxicity: an under-recognized and severe adverse effect? Clin Res Cardiol. 2010 Nov;99(11):693-700. doi:
33. Haller T, Cerrada A, Pfallerc K, Braubach P, Felder E. Polarized light microscopy reveals physiological and drug-induced changes in surfactant membrane assembly in alveolar type II pneumocytes. Biochim Biophys Acta Biomembranes. 2018 May;1860(5):1152-61. doi:
34. Seifart C, Clostermann U, Seifart U, Müller B, Vogelmeier C, von Wichert P, et al. Cell-specific modulation of surfactant proteins by ambroxol treatment. Toxicol Appl Pharmacol. 2005 Feb;203(1):27-35. doi:
35. Birkelbach B, Lutz D, Ruppert C, Henneke I, Lopez-Rodriguez E, Günther A, et al. Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model. Am J Physiol Lung Cell Mol Physiol. 2015 Jul;309(1):L63-75. doi:
36. Whitsett JA, Wert SE, Weaver TE. Diseases of pulmonary surfactant homeostasis. Annu Rev Pathol. 2015;10:371-93. doi:
37. Lee DF, Salguero FJ, Grainger D, Francis RJ, MacLellan-Gibson K, Chambers MA. Isolation and characterisation of alveolar type II pneumocytes from adult bovine lung. Sci Rep. 2018;(8):11927. doi:
38. Chroneos ZC, Chroneos ZS, Shepherd VL. Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem. 2010;25(1):13-26. doi:
39. Guzman E, Santini E. Lung surfactant-particles at fluid in terfaces for toxicity assessments. Curr Opin Colloid Interface Sci. 2019 Feb;39:24-39. doi:
40. Sosnowski TR, Kubski P, Wojciechowski K. New experimental model of pulmonary surfactant for biophysical studies. Coll Surf A Physicochem Eng Asp. 2017 Apr;519:27-33.
41. Echaide M, Autilio C, Arroyo R, Perez-Gil J. Restoring pulmonary surfactant membranes and films at the respiratory surface. Biochim Biophys Acta Biomembr. 2017 Sep;1859(9 Pt B):1725-1739. doi:
42. Kaminskaia GO. Non-respiratory lung function. V: Erokhin VV, Romanova LK, red. Kletochnaia biologiia legkikh v norme i pri patologii. Moscow, RF: Meditsina; 2000. Р. 57-71. (In Russ.)
43. Serrano AG, Pérez-Gil J. Protein-lipid interactions and surface activity in the pulmonary surfactant system. Chem Phys Lipids. 2006 Jun;141(1-2):105-18.  doi:
44. Nizamutdinova RR. The influence of unfavorable environmental factors on the surfactant system of the lungs and the possibility of its spontaneous recovery. Vestn Novykh Med Tekhnologii. 2008;15(1):133-6. (In Russ.)
45. Tsuda H, Kotani T, Sumigama S, Mano Y, Kawabata I, Takahashi Y, et al. Amniotic lamellar body count: predicting and distinguishing neonatal respiratory complications in twin pregnancies. Clin Chim Acta. 2015 Feb;441:75-8. doi:
46. Kumarn GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery – an overview. Acta Pharm Sinica B. 2011 Dec;1(4):208-19.
47. Putintceva NV. Prospects for the use of w-3 polyunsaturated fatty acids for the correction of the surfactant properties of the lungs in patients with chronic obstructive bronchitis. Ukrain Pul’monol Zhurn. 2003;(4):56-9. (In Russ.)
48. Daniels CB, Orgeig S. Pulmonary surfactant: the key to the evolution of air breathing. News Physiol Sci. 2003 Aug;18:151-7. doi:

Information about authors:
Ishutsina O.V. – lecturer of the Chair of Histology, Cytology & Embryology, Belarusian State Medical University.

Correspondence address: Republic of Belarus, 220116, Minsk, 83 Dzerzhinskogo ave., Belarusian State Medical University, Chair of Histology, Cytology & Embryology. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Olga V. Ishutsina.

Поиск по сайту