Menu

A+ A A-

Download article

DOI: https://doi.org/10.22263/2312-4156.2022.2.7

Fliuryk S.V., Dremza I.K.
The mechanisms of mitochondrial neuron dysfunction under the influence of arsenic and aluminium (review)
Grodno State Medical University, Grodno, Republic of Belarus

Vestnik VGMU. 2022;21(2):7-14.

Abstract.
Exposure to neurotropic chemicals (aluminum, arsenic, etc.) as a result of pollution of environmental objects can cause disruption of the bioenergetics of nerve cells.
Objectives. To analyze and summarize the literature data on the mechanisms of the effects of arsenic and aluminum on the structure and functions of neuronal mitochondria. Sources of data: literature sources reflecting the mechanisms of the influence of these neurotoxicants on neuronal mitochondria.
Methods. The basis of this study was the review of literature on this topic.
Results. The influence of arsenic compounds on nerve cells causes mitochondrial dysfunction due to the activation of oxidative stress, an increase in the intracellular level of Ca2+, a decrease in the mitochondrial membrane potential and the level of calpain 1, but aluminum compounds increase the formation of reactive oxygen species (ROS) and disrupt the activity of cytochrome c-oxidase and the energy-producing function of mitochondria in various types of neurons. Mitochondrial dysfunction, caused when exposed to these metals is accompanied by the decrease in ROS resynthesis and the activation of oxidative stress, which in its turn decreases energy generation in mitochondria still to a greater extent according to the mechanism of a vicious circle («CIRCULUS VITIOSUS»).
Conclusions. The presented information deepens our knowledge about the mechanisms of neuronal bioenergetics disorders under the influence of arsenic and aluminum compounds, which is the basis for further research in order to develop effective methods of prevention, detoxification and antioxidant therapy for acute and chronic arsenic and aluminum poisoning and to implement the results obtained in practical healthcare.
Key words: mitochondria, neuronal bioenergetics, nervous system, arsenic and aluminum neurotoxicity, electron transport chain, mitochondria.

References

1. Smith EF, Shaw PJ, De Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett. 2019 Sep;710:132933. doi: http://dx.doi.org/10.1016/j.neulet.2017.06.052  
2. Tenan MR, Nicolle A, Moralli D, Verbouwe E, Jankowska JD, Durin MA, et al. Aluminum Enters Mammalian Cells and Destabilizes Chromosome Structure and Number. Int J Mol Sci. 2021 Sep;22(17):9515. doi: http://dx.doi.org/10.3390/ijms22179515
3. Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, et al. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. Environ Res. 2018 Oct;166:234-250. doi: http://dx.doi.org/10.1016/j.envres.2018.05.020
4. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol. 2021 Apr;12:643972. doi: http://dx.doi.org/10.3389/fphar.2021.643972
5. Kuivenhoven M, Mason K. Arsenic Toxicity. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022. Avaiable from: https://www.statpearls.com/. [Accessed 06th Apr 2022].
6. Mochizuki H. Arsenic Neurotoxicity in Humans. Int J Mol Sci. 2019 Jul;20(14):3418. doi: http://dx.doi.org/10.3390/ijms20143418
7. Chandravanshi LP, Gupta R, Shukla RK. Arsenic-Induced Neurotoxicity by Dysfunctioning Cholinergic and Dopaminergic System in Brain of Developing Rats. Biol Trace Elem Res. 2019 May;189(1):118-133. doi: http://dx.doi.org/10.1007/s12011-018-1452-5
8. Niño SA, Morales-Martínez A, Chi-Ahumada Erika, Carrizales L, Salgado-Delgado R, Pérez-Severiano F, et al. Arsenic Exposure Contributes to the Bioenergetic Damage in an Alzheimer’s Disease Model. ACS Chem Neurosci. 2019 Jan;10(1):323-336. doi: http://dx.doi.org/10.1021/acschemneuro.8b00278
9. Escudero-Lourdes C. Toxicity mechanisms of arsenic that are shared with neurodegenerative diseases and cognitive impairment: Role of oxidative stress and inflammatory responses. Neurotoxicology. 2016 Mar;53:223-235. doi: http://dx.doi.org/10.1016/j.neuro.2016.02.002
10. Sun X, He Y, Guo Y, Li S, Zhao H, Wang Y, et al. Arsenic affects inflammatory cytokine expression in Gallus gallus brain tissues. BMC Vet Res. 2017 Jun;13(1):157. doi: http://dx.doi.org/10.1186/s12917-017-1066-8
11. Wang Yi, Tang B, Long L, Luo P, Xiang W, Li X, et al. Improvement of obesity-associated disorders by a small-molecule drug targeting mitochondria of adipose tissue macrophages. Nat Commun. 2021;12:102. doi: http://dx.doi.org/10.1038/s41467-020-20315-9
12. Liu J, Zhao H, Wang Y, Shao Y, Zong H, Zeng X, et al. Arsenic trioxide andor copper sulfate induced apoptosis and autophagy associated with oxidative stress and perturbation of mitochondrial dynamics in the thymus of Gallus gallus. Chemosphere. 2019 Mar;219:227-235. doi: http://dx.doi.org/10.1016/j.chemosphere.2018.11.188
13. Promyo K, Iqbal F, Chaidee N, Chetsawang B. Aluminum chloride-induced amyloid beta accumulation and endoplasmic reticulum stress in rat brain are averted by melatonin. Food Chem Toxicol. 2020 Dec;146:111829. doi: http://dx.doi.org/10.1016/j.fct.2020.111829
14. Liu H, Zhang W, Fang Y, Yang H, Tian L, Li K, et al. Neurotoxicity of aluminum oxide nanoparticles and their mechanistic role in dopaminergic neuron injury involving p53-related pathways. J Hazard Mater. 2020 Jun;392:122312. doi: http://dx.doi.org/10.1016/j.jhazmat.2020.122312
15. McLachlan DRC, Bergeron C, Alexandrov PN, Walsh WJ, Pogue AI, Percy ME, et al. Aluminum in Neurological and Neurodegenerative Disease. Mol Neurobiol. 2019 Feb;56(2):1531-1538. doi: http://dx.doi.org/10.1007/s12035-018-1441-x
16. Huang T, Guo W, Wang Y, Chang L, Shang N, Chen J, et al. Involvement of Mitophagy in Aluminum Oxide Nanoparticle-Induced Impairment of Learning and Memory in Mice. Neurotox Res. 2021 Apr;39(2):378-391. doi: http://dx.doi.org/10.1007/s12640-020-00283-0  
17. Rahmani S, Saberzadeh J, Takhshid MA. The Hydroalcoholic Extract of Saffron Protects PC12 Cells against Aluminum-Induced Cell Death and Oxidative Stress in Vitro. Iran J Med Sci. 2020 Jan;45(1):59-66. doi: http://dx.doi.org/10.30476/ijms.2019.44971
18. Tsialtas I, Gorgogietas VA, Michalopoulou M, Komninou A, Liakou E, Georgantopoulos A, et al. Neurotoxic effects of aluminum are associated with its interference with estrogen receptors signaling. Neurotoxicology. 2020 Mar;77:114-126. doi: http://dx.doi.org/10.1016/j.neuro.2020.01.004
19. Wang P, Wu Q, Wu W, Li H, Guo Y, Yu P, et al. Mitochondrial Ferritin Deletion Exacerbates beta-Amyloid-Induced Neurotoxicity in Mice. Oxid Med Cell Longev. 2017;2017:1020357. doi: http://dx.doi.org/10.1155/2017/1020357
20. Sharma DR, Wani WY, Sunkaria A, Kandimalla RJ, Sharma RK, Verma D, et al. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience. 2016 Jun;324:163-76. doi: http://dx.doi.org/10.1016/j.neuroscience.2016.02.055  
21. Prakash A, Shur B, Kumar A. Naringin protects memory impairment and mitochondrial oxidative damage against aluminum- induced neurotoxicity in rats. Int J Neurosci. 2013 Sep;123(9):636-45. doi: http://dx.doi.org/10.3109/00207454.2013.785542
22. Prakash A, Kumar A. Еffect of Centellaasiatica against aluminum-induced neurotoxicity in rats: Possible relevance to its anti-oxidant and anti-apoptosis mechanism. Neurol Sci. 2013 Aug;34(8):1403-9. doi: http://dx.doi.org/10.1007/s10072-012-1252-1
23. Wang C, Cai X, Hu W, Li Z, Kong F, Chen X, et al. Investigation of the neuroprotective effects of crocin via antioxidant activities in HT22 cells and in mice with Alzheimer’s disease. Int J Mol Med. 2019 Feb;43(2):956-966. doi: http://dx.doi.org/10.3892/ijmm.2018.4032

Information about authors:
Fliuryk S.V. – lecturer of the Chair of Pathological Physiology named after D.A. Maslakov, Grodno State Medical University;
Dremza I.K.– Candidate of Biological Sciences, associate professor of the Chair of Pathological Physiology named after D.A. Maslakov, Grodno State Medical University.

Correspondence address: Republic of Belarus, 230009, Grodno, 80 Gorky str., Grodno State Medical University, Chair of Pathological Physiology named after D.A. Maslakov. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. – Siarhei V. Fliuryk.

Поиск по сайту